Suppr超能文献

基于分布式特征表示的卷积神经网络模型预测 N6-甲基腺苷位点。

Prediction of N6-methyladenosine sites using convolution neural network model based on distributed feature representations.

机构信息

Department of Computer Science, Abdul Wali Khan University Mardan 23200, KP, Pakistan; Department of Electronics and Information Engineering, Chonbuk National University, Jeonju 54896, South Korea.

Department of Computer Science, Abdul Wali Khan University Mardan 23200, KP, Pakistan.

出版信息

Neural Netw. 2020 Sep;129:385-391. doi: 10.1016/j.neunet.2020.05.027. Epub 2020 Jun 2.

Abstract

N-methyladenosine (mA) is a well-studied and most common interior messenger RNA (mRNA) modification that plays an important function in cell development. NA is found in all kingdoms​ of life and many other cellular processes such as RNA splicing, immune tolerance, regulatory functions, RNA processing, and cancer. Despite the crucial role of mA in cells, it was targeted computationally, but unfortunately, the obtained results were unsatisfactory. It is imperative to develop an efficient computational model that can truly represent mA sites. In this regard, an intelligent and highly discriminative computational model namely: m6A-word2vec is introduced for the discrimination of mA sites. Here, a concept of natural language processing in the form of word2vec is used to represent the motif of the target class automatically. These motifs (numerical descriptors) are automatically targeted from the human genome without any clear definition. Further, the extracted feature space is then forwarded to the convolution neural network model as input for prediction. The developed computational model obtained 83.17%, 92.69%, and 90.50% accuracy for benchmark datasets S, S, and S, respectively, using a 10-fold cross-validation test. The predictive outcomes validate that the developed intelligent computational model showed better performance compared to existing computational models. It is thus greatly estimated that the introduced computational model "m6A-word2vec" may be a supportive and practical tool for elementary and pharmaceutical research such as in drug design along with academia.

摘要

N6-甲基腺苷(m6A)是一种研究充分且最常见的内部信使 RNA(mRNA)修饰,在细胞发育中具有重要功能。m6A 存在于所有生命领域和许多其他细胞过程中,如 RNA 剪接、免疫耐受、调节功能、RNA 处理和癌症。尽管 m6A 在细胞中具有重要作用,但它是通过计算方法靶向的,但不幸的是,得到的结果并不令人满意。因此,开发一种能够真正代表 m6A 位点的高效计算模型势在必行。在这方面,引入了一种智能且高度区分的计算模型,即 m6A-word2vec,用于区分 m6A 位点。在这里,以 word2vec 的形式使用自然语言处理的概念来自动表示目标类别的基序。这些基序(数字描述符)是自动从人类基因组中提取的,没有明确的定义。然后,将提取的特征空间进一步作为输入转发到卷积神经网络模型进行预测。在使用 10 倍交叉验证测试时,该开发的计算模型分别在基准数据集 S、S 和 S 上获得了 83.17%、92.69%和 90.50%的准确率。预测结果验证了所开发的智能计算模型与现有计算模型相比具有更好的性能。因此,可以估计,所提出的计算模型“m6A-word2vec”可能是药物设计等基础和制药研究以及学术界的一种支持性和实用工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验