Suppr超能文献

行为聚类自闭症特征亚组中的皮质特征:基于人群的研究。

Cortical signatures in behaviorally clustered autistic traits subgroups: a population-based study.

机构信息

Neurospin, Institut Joliot, CEA, Université Paris-Saclay, Gif-sur-Yvette, 91191, France.

CNRS-Centrale Supélec, 3 rue Joliot-Curie, 91192, Gif-sur-Yvette, France.

出版信息

Transl Psychiatry. 2020 Jun 27;10(1):207. doi: 10.1038/s41398-020-00894-3.

Abstract

Extensive heterogeneity in autism spectrum disorder (ASD) has hindered the characterization of consistent biomarkers, which has led to widespread negative results. Isolating homogenized subtypes could provide insight into underlying biological mechanisms and an overall better understanding of ASD. A total of 1093 participants from the population-based "Healthy Brain Network" cohort (Child Mind Institute in the New York City area, USA) were selected based on score availability in behaviors relevant to ASD, aged 6-18 and IQ >= 70. All participants underwent an unsupervised clustering analysis on behavioral dimensions to reveal subgroups with ASD traits, identified by the presence of social deficits. Analysis revealed three socially impaired ASD traits subgroups: (1) high in emotionally dysfunctional traits, (2) high in ADHD-like traits, and (3) high in anxiety and depressive symptoms. 527 subjects had good quality structural MRI T1 data. Site effects on cortical features were adjusted using the ComBat method. Neuroimaging analyses compared cortical thickness, gyrification, and surface area, and were controlled for age, gender, and IQ, and corrected for multiple comparisons. Structural neuroimaging analyses contrasting one combined heterogeneous ASD traits group against controls did not yield any significant differences. Unique cortical signatures, however, were observed within each of the three individual ASD traits subgroups versus controls. These observations provide evidence of ASD traits subtypes, and confirm the necessity of applying dimensional approaches to extract meaningful differences, thus reducing heterogeneity and paving the way to better understanding ASD traits.

摘要

自闭症谱系障碍(ASD)存在广泛的异质性,这阻碍了一致生物标志物的特征描述,导致了广泛的阴性结果。分离均质亚型可以深入了解潜在的生物学机制,并全面更好地了解 ASD。基于与 ASD 相关行为的评分可用性,从基于人群的“健康大脑网络”队列(美国纽约市的儿童思维研究所)中选择了 1093 名参与者,年龄在 6-18 岁之间,智商≥70。所有参与者都接受了行为维度的无监督聚类分析,以揭示具有 ASD 特征的亚组,这些亚组通过社交缺陷表现出来。分析揭示了三个具有社交障碍的 ASD 特征亚组:(1)情绪功能障碍特征高,(2)ADHD 样特征高,(3)焦虑和抑郁症状高。527 名受试者具有良好质量的结构 MRI T1 数据。使用 ComBat 方法调整了皮质特征的站点效应。神经影像学分析比较了皮质厚度、脑回和表面积,并控制了年龄、性别和智商,并进行了多次比较校正。对比一个综合的异质 ASD 特征组和对照组的结构神经影像学分析没有产生任何显著差异。然而,在每个三个个体 ASD 特征亚组与对照组之间都观察到了独特的皮质特征。这些观察结果提供了 ASD 特征亚型的证据,并证实了应用维度方法提取有意义差异的必要性,从而减少了异质性,并为更好地理解 ASD 特征铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbf6/7320967/041cb54406d4/41398_2020_894_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验