DeLong John P, Lyon Shelby
School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA.
PeerJ. 2020 Jun 19;8:e9377. doi: 10.7717/peerj.9377. eCollection 2020.
Predicting the effects of climate warming on the dynamics of ecological systems requires understanding how temperature influences birth rates, death rates and the strength of species interactions. The temperature dependance of these processes-which are the underlying mechanisms of ecological dynamics-is often thought to be exponential or unimodal, generally supported by short-term experiments. However, ecological dynamics unfold over many generations. Our goal was to empirically document shifts in predator-prey cycles over the full range of temperatures that can possibly support a predator-prey system and then to uncover the effect of temperature on the underlying mechanisms driving those changes.
We measured the population dynamics of the predator-prey system across a wide range of temperatures to reveal systematic changes in the dynamics of the system. We then used ordinary differential equation fitting to estimate parameters of a model describing the dynamics, and used these estimates to assess the long-term temperature dependance of all the underlying mechanisms.
We found that predator-prey cycles shrank in state space from colder to hotter temperatures and that both cycle period and amplitude varied with temperature. Model parameters showed mostly unimodal responses to temperature, with one parameter (predator mortality) increasing monotonically with temperature and one parameter (predator conversion efficiency) invariant with temperature. Our results indicate that temperature can have profound, systematic effects on ecological dynamics, and these can arise through diverse and simultaneous changes in multiple underlying mechanisms. Predicting the effects of temperature on ecological dynamics may require additional investigation into how the underlying drivers of population dynamics respond to temperature beyond a short-term, acute response.
预测气候变暖对生态系统动态的影响需要了解温度如何影响出生率、死亡率以及物种间相互作用的强度。这些过程——作为生态动态的潜在机制——的温度依赖性通常被认为是指数型或单峰型的,这在短期实验中通常得到支持。然而,生态动态是历经多代展开的。我们的目标是通过实证记录捕食者 - 猎物循环在可能支持捕食者 - 猎物系统的整个温度范围内的变化,然后揭示温度对驱动这些变化的潜在机制的影响。
我们在广泛的温度范围内测量了捕食者 - 猎物系统的种群动态,以揭示系统动态的系统性变化。然后我们使用常微分方程拟合来估计描述动态的模型参数,并使用这些估计值来评估所有潜在机制的长期温度依赖性。
我们发现捕食者 - 猎物循环在状态空间中从较冷温度到较热温度逐渐收缩,并且循环周期和振幅均随温度变化。模型参数对温度大多呈现单峰响应,其中一个参数(捕食者死亡率)随温度单调增加,一个参数(捕食者转化效率)随温度不变。我们的结果表明,温度可对生态动态产生深远的系统性影响,并且这些影响可通过多种潜在机制的多样且同时发生的变化而产生。预测温度对生态动态的影响可能需要进一步研究种群动态的潜在驱动因素如何在短期急性响应之外对温度作出反应。