Suppr超能文献

用生态代谢理论约束非线性时间序列模型。

Constraining nonlinear time series modeling with the metabolic theory of ecology.

机构信息

Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Santa Cruz, CA 95060.

Department of Applied Mathematics, University of California, Santa Cruz, CA 95060.

出版信息

Proc Natl Acad Sci U S A. 2023 Mar 21;120(12):e2211758120. doi: 10.1073/pnas.2211758120. Epub 2023 Mar 17.

Abstract

Forecasting the response of ecological systems to environmental change is a critical challenge for sustainable management. The metabolic theory of ecology (MTE) posits scaling of biological rates with temperature, but it has had limited application to population dynamic forecasting. Here we use the temperature dependence of the MTE to constrain empirical dynamic modeling (EDM), an equation-free nonlinear machine learning approach for forecasting. By rescaling time with temperature and modeling dynamics on a "metabolic time step," our method (MTE-EDM) improved forecast accuracy in 18 of 19 empirical ectotherm time series (by 19% on average), with the largest gains in more seasonal environments. MTE-EDM assumes that temperature affects only the rate, rather than the form, of population dynamics, and that interacting species have approximately similar temperature dependence. A review of laboratory studies suggests these assumptions are reasonable, at least approximately, though not for all ecological systems. Our approach highlights how to combine modern data-driven forecasting techniques with ecological theory and mechanistic understanding to predict the response of complex ecosystems to temperature variability and trends.

摘要

预测生态系统对环境变化的响应是可持续管理的一个关键挑战。生态代谢理论(MTE)假设生物速率随温度呈比例变化,但它在种群动态预测方面的应用有限。在这里,我们使用 MTE 的温度依赖性来约束经验动态建模(EDM),这是一种无方程的非线性机器学习预测方法。通过用温度重新缩放时间,并在“代谢时间步长”上对动力学进行建模,我们的方法(MTE-EDM)在 19 个经验外温动物时间序列中的 18 个中提高了预测准确性(平均提高了 19%),在季节性更强的环境中提高幅度更大。MTE-EDM 假设温度仅影响种群动态的速率,而不影响其形式,并且相互作用的物种具有大致相似的温度依赖性。对实验室研究的综述表明,这些假设至少在一定程度上是合理的,尽管并非适用于所有生态系统。我们的方法强调了如何将现代数据驱动的预测技术与生态理论和机械理解相结合,以预测复杂生态系统对温度变化和趋势的响应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验