Am J Epidemiol. 2021 Jan 4;190(1):142-149. doi: 10.1093/aje/kwaa122.
A growing number of studies use data before and after treatment initiation in groups exposed to different treatment strategies to estimate "causal effects" using a ratio measure called the prior event rate ratio (PERR). Here, we offer a causal interpretation for PERR and its additive scale analog, the prior event rate difference (PERD). We show that causal interpretation of these measures requires untestable rate-change assumptions about the relationship between 1) the change of the counterfactual rate before and after treatment initiation in the treated group under hypothetical intervention to implement the control strategy; and 2) the change of the factual rate before and after treatment initiation in the control group. The rate-change assumption is on the multiplicative scale for PERR but on the additive scale for PERD; the 2 assumptions hold simultaneously under testable, but unlikely, conditions. Even if investigators can pick the most appropriate scale, the relevant rate-change assumption might not hold exactly, so we describe sensitivity analysis methods to examine how assumption violations of different magnitudes would affect study results. We illustrate the methods using data from a published study of proton pump inhibitors and pneumonia.
越来越多的研究在暴露于不同治疗策略的组中使用治疗开始前后的数据,使用称为先验事件率比 (PERR) 的比率度量来估计“因果效应”。在这里,我们为 PERR 及其加性标度类似物,即先验事件率差异 (PERD),提供了因果解释。我们表明,这些措施的因果解释需要对以下关系进行未经检验的速率变化假设:1)在治疗组中,根据假设干预实施对照策略,治疗开始前后反事实速率的变化;以及 2)在对照组中,治疗开始前后实际速率的变化。对于 PERR,速率变化假设是在乘法标度上,但对于 PERD,是在加法标度上;在可检验但不太可能的条件下,这两个假设同时成立。即使研究人员可以选择最合适的标度,相关的速率变化假设也不一定完全成立,因此我们描述了敏感性分析方法来检查不同大小的假设违反将如何影响研究结果。我们使用发表的质子泵抑制剂和肺炎研究的数据来说明这些方法。