Suppr超能文献

基于小波能量矩的嗅觉脑电信号识别

[Olfactory electroencephalogram signal recognition based on wavelet energy moment].

作者信息

Zhai Wenpeng, Zhang Xiaonei, Hou Huirang, Meng Qinghao

机构信息

School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, P.R.China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2020 Jun 25;37(3):399-404. doi: 10.7507/1001-5515.201910036.

Abstract

Studying the ability of the brain to recognize different odors is of great significance in the assessment and diagnosis of olfactory dysfunction. The wavelet energy moment (WEM) was proposed as a feature of olfactory electroencephalogram (EEG) signal and used for odor classification. Firstly, the olfactory evoked EEG data of 13 odors were collected by an experiment. Secondly, the WEM was extracted from olfactory evoked EEG data as the signal feature, and the power spectrum density (PSD), approximate entropy, sample entropy and wavelet entropy were used as the contrast features. Finally, -nearest neighbor ( -NN), support vector machine (SVM), random forest (RF) and decision tree classifier were used to identify different odors. The results showed that using the above four classifiers, the classification accuracy of WEM feature was higher than other features, and the -NN classifier combined with WEM feature had the highest classification accuracy (91.07%). This paper further explored the characteristics of different EEG frequency bands, and found that most of the classification accuracy based on the features of γ band was better than that of the full band and other bands, among which the WEM feature of the γ band combined with the -NN classifier had the highest classification accuracy (93.89 %). The research results of this paper could provide a new objective basis for the evaluation of olfactory function. On the other hand, it could also provide new ideas for the study of olfactory-induced emotions.

摘要

研究大脑识别不同气味的能力在嗅觉功能障碍的评估和诊断中具有重要意义。小波能量矩(WEM)被提出作为嗅觉脑电图(EEG)信号的一个特征,并用于气味分类。首先,通过实验收集了13种气味的嗅觉诱发EEG数据。其次,从嗅觉诱发EEG数据中提取WEM作为信号特征,并将功率谱密度(PSD)、近似熵、样本熵和小波熵用作对比特征。最后,使用K近邻(K-NN)、支持向量机(SVM)、随机森林(RF)和决策树分类器来识别不同的气味。结果表明,使用上述四种分类器,WEM特征的分类准确率高于其他特征,并且K-NN分类器与WEM特征相结合具有最高的分类准确率(91.07%)。本文进一步探索了不同EEG频段的特征,发现基于γ频段特征的分类准确率大多优于全频段和其他频段,其中γ频段的WEM特征与K-NN分类器相结合具有最高的分类准确率(93.89%)。本文的研究结果可为嗅觉功能评估提供新的客观依据。另一方面,也可为嗅觉诱发情绪的研究提供新思路。

相似文献

1
[Olfactory electroencephalogram signal recognition based on wavelet energy moment].基于小波能量矩的嗅觉脑电信号识别
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2020 Jun 25;37(3):399-404. doi: 10.7507/1001-5515.201910036.

本文引用的文献

3
Olfactory Recognition Based on EEG Gamma-Band Activity.基于脑电图伽马波段活动的嗅觉识别
Neural Comput. 2017 Jun;29(6):1667-1680. doi: 10.1162/NECO_a_00966. Epub 2017 Apr 14.
4
Cerebral bases of emotion regulation toward odours: A first approach.对气味进行情绪调节的大脑基础:初步探讨。
Behav Brain Res. 2017 Jan 15;317:37-45. doi: 10.1016/j.bbr.2016.09.027. Epub 2016 Sep 12.
5
The Influence of Odors on Time Perception.气味对时间感知的影响。
Front Psychol. 2016 Feb 17;7:181. doi: 10.3389/fpsyg.2016.00181. eCollection 2016.
10
The influence of stimulus duration on odor perception.刺激持续时间对气味感知的影响。
Int J Psychophysiol. 2006 Oct;62(1):24-9. doi: 10.1016/j.ijpsycho.2005.11.006. Epub 2006 Jan 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验