College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
J Mater Chem B. 2020 Aug 5;8(30):6459-6468. doi: 10.1039/d0tb01337d.
A self-templated strategy was adopted to design hollow Co3O4/MO3 (M = Mo, W) mixed-metal oxides via the Mo or W doping of ZIF-67, and subsequent pyrolysis under an atmosphere of air at a low temperature of 450 °C. The hollow Co3O4/MO3 (M = Mo, W) mixed-metal oxides displayed tunable oxidase-like and peroxidase-like activities able to efficiently catalyze the oxidation of TMB to generate a deep blue color in the absence or presence of H2O2. Relative to that of the un-doped Co3O4, the oxidase mimic activity of the Mo-doped Co3O4 increased to 1.3 to 2.1-fold, while its peroxidase mimic activity increased to 7.1 to 19.9-fold, depending on different Mo doping amounts. The oxidase mimic activity of the W-doped Co3O4 increased to 2.1 to 2.3-fold, while its peroxidase mimic activity increased to 4.8 to 5.9-fold, depending on the different W doping amounts. The Mo- and W-doped Co3O4 nanohybrid exhibited both higher O2 and H2O2 activating capability, and their H2O2 activating capacity was superior to the O2 activating capability. Furthermore, the Mo- and W-doped Co3O4 nanohybrids exhibited similar O2 activating abilities, while the Mo-doped one displayed a higher H2O2 activating capability than the W-doped one. The discrepant peroxidase-like nature of Mo- and W-doped Co3O4 nanohybrids is likely attributed to their different catalytic mechanisms. The peroxidase-like activity of Mo-doped Co3O4 is highly related to the ˙OH free radical, while that of W-doped Co3O4 is likely ascribed to the electron transfer between TMB and H2O2. The Km values of Co3O4/MoO3 for TMB and H2O2 were 0.0352 mM and 0.134 mM, which were 3.2- and 1.9-fold lower than that of pure Co3O4, respectively. A Co3O4/MoO3-based colorimetric platform was developed for the determination of H2O2 in the 0.1-200 μM range, with a limit of detection of 0.08 μM (3σ). Based on the thiocholine (TCh) inhibition of the excellent peroxidase-like activity of Co3O4/MoO3 and the TCh generation via acetylcholinesterase (AChE) catalyzed hydrolysis of acetylthiocholine chloride (ATCh), the colorimetric platform was extended to screen AChE activity and its inhibitor.
采用自模板策略,通过 ZIF-67 中 Mo 或 W 的掺杂,然后在 450°C 的低温下在空气中进行热解,设计出空心 Co3O4/MO3(M = Mo、W)混合金属氧化物。空心 Co3O4/MO3(M = Mo、W)混合金属氧化物具有可调的氧化酶样和过氧化物酶样活性,能够在没有或存在 H2O2 的情况下有效地催化 TMB 的氧化,生成深蓝色。与未掺杂的 Co3O4 相比,Mo 掺杂的 Co3O4 的氧化酶模拟活性增加了 1.3 到 2.1 倍,而过氧化物酶模拟活性增加了 7.1 到 19.9 倍,这取决于不同的 Mo 掺杂量。W 掺杂的 Co3O4 的氧化酶模拟活性增加了 2.1 到 2.3 倍,而过氧化物酶模拟活性增加了 4.8 到 5.9 倍,这取决于不同的 W 掺杂量。Mo 和 W 掺杂的 Co3O4 纳米杂化物具有更高的 O2 和 H2O2 激活能力,其 H2O2 激活能力优于 O2 激活能力。此外,Mo 和 W 掺杂的 Co3O4 纳米杂化物具有相似的 O2 激活能力,而 Mo 掺杂的 Co3O4 纳米杂化物具有比 W 掺杂的 Co3O4 更高的 H2O2 激活能力。Mo 和 W 掺杂的 Co3O4 纳米杂化物之间不同的过氧化物酶样性质可能归因于它们不同的催化机制。Mo 掺杂的 Co3O4 的过氧化物酶样活性与˙OH 自由基高度相关,而 W 掺杂的 Co3O4 的过氧化物酶样活性可能归因于 TMB 和 H2O2 之间的电子转移。Co3O4/MoO3 对 TMB 和 H2O2 的 Km 值分别为 0.0352 mM 和 0.134 mM,分别比纯 Co3O4 低 3.2 倍和 1.9 倍。基于 Co3O4/MoO3 的比色平台,开发了用于测定 0.1-200 μM 范围内 H2O2 的方法,检测限为 0.08 μM(3σ)。基于 Co3O4/MoO3 的优异过氧化物酶样活性对硫代胆碱(TCh)的抑制作用以及乙酰胆碱酯酶(AChE)催化氯化乙酰硫代胆碱(ATCh)水解生成 TCh,将比色平台扩展用于筛选 AChE 活性及其抑制剂。