Suppr超能文献

用于硫化物基全固态电池的基于前驱体的阴极表面用钽和钨进行改性

Precursor-based surface modification of cathodes using Ta and W for sulfide-based all-solid-state batteries.

作者信息

Lim Chung Bum, Park Yong Joon

机构信息

Department of Advanced Materials Engineering, Graduate School Kyonggi University, 154-42, Gwanggyosan-Ro, Yeongtong-Gu, Suwon-Si, Gyeonggi-Do, 16227, Republic of Korea.

出版信息

Sci Rep. 2020 Jun 29;10(1):10501. doi: 10.1038/s41598-020-67493-6.

Abstract

Sulfide ionic conductors are promising candidates as solid electrolytes for all-solid-state batteries due to their high conductivity. However, interfacial instability between cathodes and sulfide electrolytes still remains a challenge because sulfides are highly reactive. To suppress undesirable side reactions at the cathode/sulfide electrolyte interface, the surface of the cathode has been modified using stable coating materials. Herein, a precursor based (PB) surface modification using Ta and W is introduced as an effective approach for the formation of a suitable cathode coating layer. Through heat-treatment of the PB surface modification, the source materials (Ta or W) coated on the precursors diffused into the cathode and acted as a dopant. Formation of the surface coating layer was confirmed by X-ray photoelectron spectroscopy (XPS) depth profiles and scanning transmission electron microscopy (STEM) images. The PB surface modified electrodes showed higher capacity, improved rate capability and enhanced cyclic performance compared to those of the pristine electrode. The impedance value of the cells dominantly decreased after cycling due to the modification effect. Moreover, considering the XPS analysis, undesirable reaction products that formed upon cycling were reduced by PB surface modification. These results indicate that PB surface modification using Ta and W effectively suppresses undesirable side reactions and stabilizes the cathode/sulfide electrolyte interface, which is a synergic effect of the doping and coating attributed to Ta and W.

摘要

硫化物离子导体因其高电导率而有望成为全固态电池的固体电解质。然而,由于硫化物具有高反应活性,阴极与硫化物电解质之间的界面不稳定性仍然是一个挑战。为了抑制阴极/硫化物电解质界面处的不良副反应,已使用稳定的涂层材料对阴极表面进行了改性。在此,引入了一种基于前驱体(PB)的使用Ta和W的表面改性方法,作为形成合适阴极涂层的有效途径。通过对PB表面改性进行热处理,涂覆在前驱体上的源材料(Ta或W)扩散到阴极中并充当掺杂剂。通过X射线光电子能谱(XPS)深度剖析和扫描透射电子显微镜(STEM)图像证实了表面涂层的形成。与原始电极相比,PB表面改性电极表现出更高的容量、更好的倍率性能和增强的循环性能。由于改性作用,电池的阻抗值在循环后显著降低。此外,考虑到XPS分析,PB表面改性减少了循环时形成的不良反应产物。这些结果表明,使用Ta和W的PB表面改性有效地抑制了不良副反应并稳定了阴极/硫化物电解质界面,这是Ta和W的掺杂和涂层的协同效应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b39/7324361/0eea9d64bfb8/41598_2020_67493_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验