Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.
NMI TT Pharmaservices, Berlin, Germany.
Lab Invest. 2020 Oct;100(10):1288-1299. doi: 10.1038/s41374-020-0455-y. Epub 2020 Jun 29.
Histomorphology and immunohistochemistry are the most common ways of cancer classification in routine cancer diagnostics, but often reach their limits in determining the organ origin in metastasis. These cancers of unknown primary, which are mostly adenocarcinomas or squamous cell carcinomas, therefore require more sophisticated methodologies of classification. Here, we report a multiplex protein profiling-based approach for the classification of fresh frozen and formalin-fixed paraffin-embedded (FFPE) cancer tissue samples using the digital western blot technique DigiWest. A DigiWest-compatible FFPE extraction protocol was developed, and a total of 634 antibodies were tested in an initial set of 16 FFPE samples covering tumors from different origins. Of the 303 detected antibodies, 102 yielded significant correlation of signals in 25 pairs of fresh frozen and FFPE primary tumor samples, including head and neck squamous cell carcinomas (HNSC), lung squamous cell carcinomas (LUSC), lung adenocarcinomas (LUAD), colorectal adenocarcinomas (COAD), and pancreatic adenocarcinomas (PAAD). For this signature of 102 analytes (covering 88 total proteins and 14 phosphoproteins), a support vector machine (SVM) algorithm was developed. This allowed for the classification of the tissue of origin for all five tumor types studied here with high overall accuracies in both fresh frozen (90.4%) and FFPE (77.6%) samples. In addition, the SVM classifier reached an overall accuracy of 88% in an independent validation cohort of 25 FFPE tumor samples. Our results indicate that DigiWest-based protein profiling represents a valuable method for cancer classification, yielding conclusive and decisive data not only from fresh frozen specimens but also FFPE samples, thus making this approach attractive for routine clinical applications.
组织形态学和免疫组织化学是常规癌症诊断中癌症分类最常用的方法,但在确定转移中的器官来源时往往达到了极限。这些不明原发部位的癌症主要是腺癌或鳞状细胞癌,因此需要更复杂的分类方法。在这里,我们报告了一种基于多重蛋白质谱分析的方法,用于使用数字蛋白质印迹技术 DigiWest 对新鲜冷冻和福尔马林固定石蜡包埋(FFPE)的癌症组织样本进行分类。开发了一种与 DigiWest 兼容的 FFPE 提取方案,并在涵盖来自不同起源的肿瘤的 16 个 FFPE 样本的初始组中测试了总共 634 种抗体。在 303 种检测到的抗体中,有 102 种在 25 对新鲜冷冻和 FFPE 原发肿瘤样本中产生了信号的显著相关性,包括头颈部鳞状细胞癌(HNSC)、肺鳞状细胞癌(LUSC)、肺腺癌(LUAD)、结直肠腺癌(COAD)和胰腺腺癌(PAAD)。对于这 102 种分析物(涵盖 88 种总蛋白和 14 种磷酸化蛋白)的特征,开发了支持向量机(SVM)算法。这使得可以使用高总体准确度对所有五种研究肿瘤类型的组织来源进行分类,在新鲜冷冻(90.4%)和 FFPE(77.6%)样本中均如此。此外,SVM 分类器在包含 25 个 FFPE 肿瘤样本的独立验证队列中达到了 88%的总体准确度。我们的结果表明,基于 DigiWest 的蛋白质谱分析代表了一种有价值的癌症分类方法,不仅可以从新鲜冷冻标本中获得明确和决定性的数据,还可以从 FFPE 样本中获得,因此这种方法对于常规临床应用具有吸引力。