Suppr超能文献

通过电偶置换法制备的反铁氧化物/金属催化剂。

Inverse iron oxide/metal catalysts from galvanic replacement.

作者信息

Zhu Yifeng, Zhang Xin, Koh Katherine, Kovarik Libor, Fulton John L, Rosso Kevin M, Gutiérrez Oliver Y

机构信息

Institute for Integrated Catalysis, and Fundamental and Computational Science Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.

Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.

出版信息

Nat Commun. 2020 Jun 29;11(1):3269. doi: 10.1038/s41467-020-16830-4.

Abstract

Key chemical transformations require metal and redox sites in proximity at interfaces; however, in traditional oxide-supported materials, this requirement is met only at the perimeters of metal nanoparticles. We report that galvanic replacement can produce inverse FeO/metal nanostructures in which the concentration of oxide species adjoining metal domains is maximal. The synthesis involves reductive deposition of rhodium or platinum and oxidation of Fe from magnetite (FeO). We discovered a parallel dissolution and adsorption of Fe onto the metal, yielding inverse FeO-coated metal nanoparticles. This nanostructure exhibits the intrinsic activity in selective CO reduction that simple metal nanoparticles have only at interfaces with the support. By enabling a simple way to control the surface functionality of metal particles, our approach is not only scalable but also enables a versatile palette for catalyst design.

摘要

关键的化学转化需要界面处相邻的金属和氧化还原位点;然而,在传统的氧化物负载材料中,这一要求仅在金属纳米颗粒的周边得到满足。我们报道,电化置换可以产生反相FeO/金属纳米结构,其中与金属域相邻的氧化物物种浓度最大。该合成过程涉及铑或铂的还原沉积以及磁铁矿(FeO)中Fe的氧化。我们发现Fe会同时溶解并吸附到金属上,从而产生反相FeO包覆的金属纳米颗粒。这种纳米结构在选择性CO还原中表现出本征活性,而简单的金属纳米颗粒只有在与载体的界面处才具有这种活性。通过提供一种控制金属颗粒表面功能的简单方法,我们的方法不仅具有可扩展性,还为催化剂设计提供了多种选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ff0/7324589/e58513fdf83b/41467_2020_16830_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验