Zhu Yifeng, Zhang Xin, Koh Katherine, Kovarik Libor, Fulton John L, Rosso Kevin M, Gutiérrez Oliver Y
Institute for Integrated Catalysis, and Fundamental and Computational Science Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
Nat Commun. 2020 Jun 29;11(1):3269. doi: 10.1038/s41467-020-16830-4.
Key chemical transformations require metal and redox sites in proximity at interfaces; however, in traditional oxide-supported materials, this requirement is met only at the perimeters of metal nanoparticles. We report that galvanic replacement can produce inverse FeO/metal nanostructures in which the concentration of oxide species adjoining metal domains is maximal. The synthesis involves reductive deposition of rhodium or platinum and oxidation of Fe from magnetite (FeO). We discovered a parallel dissolution and adsorption of Fe onto the metal, yielding inverse FeO-coated metal nanoparticles. This nanostructure exhibits the intrinsic activity in selective CO reduction that simple metal nanoparticles have only at interfaces with the support. By enabling a simple way to control the surface functionality of metal particles, our approach is not only scalable but also enables a versatile palette for catalyst design.
关键的化学转化需要界面处相邻的金属和氧化还原位点;然而,在传统的氧化物负载材料中,这一要求仅在金属纳米颗粒的周边得到满足。我们报道,电化置换可以产生反相FeO/金属纳米结构,其中与金属域相邻的氧化物物种浓度最大。该合成过程涉及铑或铂的还原沉积以及磁铁矿(FeO)中Fe的氧化。我们发现Fe会同时溶解并吸附到金属上,从而产生反相FeO包覆的金属纳米颗粒。这种纳米结构在选择性CO还原中表现出本征活性,而简单的金属纳米颗粒只有在与载体的界面处才具有这种活性。通过提供一种控制金属颗粒表面功能的简单方法,我们的方法不仅具有可扩展性,还为催化剂设计提供了多种选择。