文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

封装在沸石咪唑酯骨架-8中的铜纳米颗粒作为一种稳定且选择性的CO加氢催化剂。

Copper nanoparticles encapsulated in zeolitic imidazolate framework-8 as a stable and selective CO hydrogenation catalyst.

作者信息

Velisoju Vijay K, Cerrillo Jose L, Ahmad Rafia, Mohamed Hend Omar, Attada Yerrayya, Cheng Qingpeng, Yao Xueli, Zheng Lirong, Shekhah Osama, Telalovic Selvedin, Narciso Javier, Cavallo Luigi, Han Yu, Eddaoudi Mohamed, Ramos-Fernández Enrique V, Castaño Pedro

机构信息

Multiscale Reaction Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.

KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.

出版信息

Nat Commun. 2024 Mar 6;15(1):2045. doi: 10.1038/s41467-024-46388-4.


DOI:10.1038/s41467-024-46388-4
PMID:38448464
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10918174/
Abstract

Metal-organic frameworks have drawn attention as potential catalysts owing to their unique tunable surface chemistry and accessibility. However, their application in thermal catalysis has been limited because of their instability under harsh temperatures and pressures, such as the hydrogenation of CO to methanol. Herein, we use a controlled two-step method to synthesize finely dispersed Cu on a zeolitic imidazolate framework-8 (ZIF-8). This catalyst suffers a series of transformations during the CO hydrogenation to methanol, leading to ~14 nm Cu nanoparticles encapsulated on the Zn-based MOF that are highly active (2-fold higher methanol productivity than the commercial Cu-Zn-Al catalyst), very selective (>90%), and remarkably stable for over 150 h. In situ spectroscopy, density functional theory calculations, and kinetic results reveal the preferential adsorption sites, the preferential reaction pathways, and the reverse water gas shift reaction suppression over this catalyst. The developed material is robust, easy to synthesize, and active for CO utilization.

摘要

金属有机框架因其独特的可调表面化学性质和可及性而作为潜在催化剂受到关注。然而,由于它们在苛刻的温度和压力下不稳定,其在热催化中的应用受到限制,例如将CO氢化为甲醇。在此,我们使用一种可控的两步法在沸石咪唑酯骨架-8(ZIF-8)上合成了精细分散的Cu。该催化剂在CO加氢制甲醇过程中经历了一系列转变,导致约14纳米的Cu纳米颗粒包裹在Zn基MOF上,这些纳米颗粒具有高活性(甲醇生产率比商业Cu-Zn-Al催化剂高2倍)、高选择性(>90%),并且在超过150小时内具有显著的稳定性。原位光谱、密度泛函理论计算和动力学结果揭示了该催化剂上的优先吸附位点、优先反应途径以及逆水煤气变换反应的抑制情况。所开发的材料坚固耐用、易于合成,并且对CO利用具有活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82a3/10918174/0825b9a2908f/41467_2024_46388_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82a3/10918174/a1ca10e004c0/41467_2024_46388_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82a3/10918174/39c0d66a2f8e/41467_2024_46388_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82a3/10918174/dda8ad1a51fc/41467_2024_46388_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82a3/10918174/748f5fa2855e/41467_2024_46388_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82a3/10918174/d403b17e28a8/41467_2024_46388_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82a3/10918174/995bc0bf9ea7/41467_2024_46388_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82a3/10918174/0825b9a2908f/41467_2024_46388_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82a3/10918174/a1ca10e004c0/41467_2024_46388_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82a3/10918174/39c0d66a2f8e/41467_2024_46388_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82a3/10918174/dda8ad1a51fc/41467_2024_46388_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82a3/10918174/748f5fa2855e/41467_2024_46388_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82a3/10918174/d403b17e28a8/41467_2024_46388_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82a3/10918174/995bc0bf9ea7/41467_2024_46388_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82a3/10918174/0825b9a2908f/41467_2024_46388_Fig7_HTML.jpg

相似文献

[1]
Copper nanoparticles encapsulated in zeolitic imidazolate framework-8 as a stable and selective CO hydrogenation catalyst.

Nat Commun. 2024-3-6

[2]
Highly Dispersed Metal Carbide on ZIF-Derived Pyridinic-N-Doped Carbon for CO Enrichment and Selective Hydrogenation.

ChemSusChem. 2018-3-22

[3]
Copper Nanocrystals Encapsulated in Zr-based Metal-Organic Frameworks for Highly Selective CO Hydrogenation to Methanol.

Nano Lett. 2016-11-7

[4]
Bimetallic Co/Zn zeolitic imidazolate framework ZIF-67 supported Cu nanoparticles: An excellent catalyst for reduction of synthetic dyes and nitroarenes.

J Hazard Mater. 2021-4-5

[5]
Efficient Role of Nanosheet-Like PrO Induced Surface-Interface Synergistic Structures over Cu-Based Catalysts for Enhanced Methanol Production from CO Hydrogenation.

ACS Appl Mater Interfaces. 2022-1-19

[6]
Capsule-Structured Copper-Zinc Catalyst for Highly Efficient Hydrogenation of Carbon Dioxide to Methanol.

ChemSusChem. 2019-10-22

[7]
Influence of Indium as a Promoter on the Stability and Selectivity of the Nanocrystalline Cu/CeO Catalyst for CO Hydrogenation to Methanol.

ACS Appl Mater Interfaces. 2021-6-23

[8]
Transforming CO into Methanol with N-Heterocyclic Carbene-Stabilized Coinage Metal Hydrides Immobilized in a Metal-Organic Framework UiO-68.

ACS Appl Mater Interfaces. 2021-12-15

[9]
PdAg Nanoparticles within Core-Shell Structured Zeolitic Imidazolate Framework as a Dual Catalyst for Formic Acid-based Hydrogen Storage/Production.

Sci Rep. 2019-10-30

[10]
Hydrogenation of CO on ZnO/Cu(100) and ZnO/Cu(111) Catalysts: Role of Copper Structure and Metal-Oxide Interface in Methanol Synthesis.

J Phys Chem B. 2018-1-18

引用本文的文献

[1]
In-Situ Assembly of Self-Photosensitizing Crystalline Copper(I) Coordination Networks for Photocatalytic CO Reduction.

JACS Au. 2025-6-18

[2]
Tailoring Catalysts for CO Hydrogenation: Synthesis and Characterization of NH-MIL-125 Frameworks.

Molecules. 2025-3-25

[3]
Fast synthesis of Cu@zeolitic imidazolate framework-8 (ZIF-8) derived Cu/ZnO catalysts a facile mechanical grinding method for CO hydrogenation to methanol.

Chem Sci. 2024-12-23

[4]
Metal-organic frameworks as thermocatalysts for hydrogen peroxide generation and environmental antibacterial applications.

Sci Adv. 2025-1-10

[5]
Studying the synthesis, antimicrobial activity, and phenol red removal of gelatin-stabilized copper nanoparticles.

Nanoscale Adv. 2024-11-19

[6]
CeO-Supported Single-Atom Cu Catalysts Modified with Fe for RWGS Reaction: Deciphering the Role of Fe in the Reaction Mechanism by In Situ/Operando Spectroscopic Techniques.

ACS Catal. 2024-7-5

本文引用的文献

[1]
Insight into the Nature of the ZnO Promoter during Methanol Synthesis.

ACS Catal. 2022-6-3

[2]
Metal-organic framework derived hollow porous CuO-CuCoO dodecahedrons as a cathode catalyst for Li-O batteries.

RSC Adv. 2019-5-24

[3]
Neighboring Zn-Zr Sites in a Metal-Organic Framework for CO Hydrogenation.

J Am Chem Soc. 2021-6-16

[4]
Nanostructure of nickel-promoted indium oxide catalysts drives selectivity in CO hydrogenation.

Nat Commun. 2021-3-30

[5]
Copper-zirconia interfaces in UiO-66 enable selective catalytic hydrogenation of CO to methanol.

Nat Commun. 2020-11-18

[6]
Adsorption-Induced Liquid-to-Solid Phase Transition of Cu Clusters in Catalytic Dissociation of CO.

J Phys Chem Lett. 2020-10-1

[7]
Inverse iron oxide/metal catalysts from galvanic replacement.

Nat Commun. 2020-6-29

[8]
Engineering the Self-Assembly Induced Emission of Copper Nanoclusters as 3D Nanomaterials with Mesoporous Sphere Structures by the Crosslinking of Ce.

ACS Omega. 2018-11-2

[9]
Exploring the ternary interactions in Cu-ZnO-ZrO catalysts for efficient CO hydrogenation to methanol.

Nat Commun. 2019-3-11

[10]
On the Mechanism Underlying the Direct Conversion of Methane to Methanol by Copper Hosted in Zeolites; Braiding Cu K-Edge XANES and Reactivity Studies.

J Am Chem Soc. 2018-8-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索