Velisoju Vijay K, Cerrillo Jose L, Ahmad Rafia, Mohamed Hend Omar, Attada Yerrayya, Cheng Qingpeng, Yao Xueli, Zheng Lirong, Shekhah Osama, Telalovic Selvedin, Narciso Javier, Cavallo Luigi, Han Yu, Eddaoudi Mohamed, Ramos-Fernández Enrique V, Castaño Pedro
Multiscale Reaction Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
Nat Commun. 2024 Mar 6;15(1):2045. doi: 10.1038/s41467-024-46388-4.
Metal-organic frameworks have drawn attention as potential catalysts owing to their unique tunable surface chemistry and accessibility. However, their application in thermal catalysis has been limited because of their instability under harsh temperatures and pressures, such as the hydrogenation of CO to methanol. Herein, we use a controlled two-step method to synthesize finely dispersed Cu on a zeolitic imidazolate framework-8 (ZIF-8). This catalyst suffers a series of transformations during the CO hydrogenation to methanol, leading to ~14 nm Cu nanoparticles encapsulated on the Zn-based MOF that are highly active (2-fold higher methanol productivity than the commercial Cu-Zn-Al catalyst), very selective (>90%), and remarkably stable for over 150 h. In situ spectroscopy, density functional theory calculations, and kinetic results reveal the preferential adsorption sites, the preferential reaction pathways, and the reverse water gas shift reaction suppression over this catalyst. The developed material is robust, easy to synthesize, and active for CO utilization.
金属有机框架因其独特的可调表面化学性质和可及性而作为潜在催化剂受到关注。然而,由于它们在苛刻的温度和压力下不稳定,其在热催化中的应用受到限制,例如将CO氢化为甲醇。在此,我们使用一种可控的两步法在沸石咪唑酯骨架-8(ZIF-8)上合成了精细分散的Cu。该催化剂在CO加氢制甲醇过程中经历了一系列转变,导致约14纳米的Cu纳米颗粒包裹在Zn基MOF上,这些纳米颗粒具有高活性(甲醇生产率比商业Cu-Zn-Al催化剂高2倍)、高选择性(>90%),并且在超过150小时内具有显著的稳定性。原位光谱、密度泛函理论计算和动力学结果揭示了该催化剂上的优先吸附位点、优先反应途径以及逆水煤气变换反应的抑制情况。所开发的材料坚固耐用、易于合成,并且对CO利用具有活性。
ACS Appl Mater Interfaces. 2021-6-23
ACS Appl Mater Interfaces. 2021-12-15
ACS Catal. 2022-6-3
J Am Chem Soc. 2021-6-16
J Phys Chem Lett. 2020-10-1
Nat Commun. 2020-6-29