Medical Image Processing Research Group (MIPRG), Department of Electrical and Computer Engineering, COMSATS University, Islamabad, Pakistan.
MAGMA. 2021 Apr;34(2):297-307. doi: 10.1007/s10334-020-00861-5. Epub 2020 Jun 29.
Dynamic MRI is useful to diagnose different diseases, e.g. cardiac ailments, by monitoring the structure and function of the heart and blood flow through the valves. Faster data acquisition is highly desirable in dynamic MRI, but this may lead to aliasing artifacts due to under-sampling. Advanced image reconstruction algorithms are required to obtain aliasing-free MR images from the acquired under-sampled data. One major limitation of using the advanced reconstruction algorithms is their computationally expensive and time-consuming nature, which make them infeasible for clinical use, especially for applications like cardiac MRI. L + S decomposition model is an approach provided in literature which separates the sparse and low-rank information in dynamic MRI. However, L + S decomposition model is a computationally complex process demanding significant computation time. In this paper, a parallel framework is proposed to accelerate the image reconstruction process of L + S decomposition model using GPU. Experiments are performed on cardiac perfusion dataset ([Formula: see text]) and cardiac cine dataset ([Formula: see text]) using NVIDIA's GeForce GTX780 GPU and Core-i7 CPU. The results show that the proposed method provides up to 18 × speed-up including the memory transfer time (i.e. data transfer between the CPU and GPU) and ~ 46 × speed-up without memory transfer for the cardiac perfusion dataset in our experiments. This level of improvement in the reconstruction time will increase the usefulness of L + S reconstruction by making it feasible for clinical applications.
动态 MRI 可用于通过监测心脏结构和瓣膜血流来诊断不同的疾病,如心脏疾病。在动态 MRI 中,更快的数据采集是非常需要的,但这可能会由于欠采样而导致混叠伪影。需要先进的图像重建算法从采集到的欠采样数据中获得无混叠的磁共振图像。使用先进的重建算法的一个主要限制是它们计算成本高且耗时,这使得它们不适用于临床应用,尤其是心脏 MRI 等应用。L + S 分解模型是文献中提供的一种方法,它可以分离动态 MRI 中的稀疏和低秩信息。然而,L + S 分解模型是一个计算复杂的过程,需要大量的计算时间。在本文中,提出了一种使用 GPU 加速 L + S 分解模型图像重建过程的并行框架。在 NVIDIA 的 GeForce GTX780 GPU 和 Core-i7 CPU 上,对心脏灌注数据集 ([Formula: see text]) 和心脏电影数据集 ([Formula: see text]) 进行了实验。实验结果表明,对于我们的实验中的心脏灌注数据集,该方法提供了高达 18 倍的加速,包括内存传输时间(即 CPU 和 GPU 之间的数据传输),并且在没有内存传输的情况下,加速比约为 46 倍。这种重建时间的改进水平将通过使其适用于临床应用来提高 L + S 重建的实用性。