Suppr超能文献

用于放射肿瘤学中危险器官自动分割的深度卷积神经网络 - 非领域转移学习的应用。

Deep convolutional neural networks for automatic segmentation of thoracic organs-at-risk in radiation oncology - use of non-domain transfer learning.

机构信息

Beaumont Artificial Intelligence Research Laboratory, Beaumont Health System, Royal Oak, MI, USA.

Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, USA.

出版信息

J Appl Clin Med Phys. 2020 Jun;21(6):108-113. doi: 10.1002/acm2.12871.

Abstract

PURPOSE

Segmentation of organs-at-risk (OARs) is an essential component of the radiation oncology workflow. Commonly segmented thoracic OARs include the heart, esophagus, spinal cord, and lungs. This study evaluated a convolutional neural network (CNN) for automatic segmentation of these OARs.

METHODS

The dataset was created retrospectively from consecutive radiotherapy plans containing all five OARs of interest, including 22,411 CT slices from 168 patients. Patients were divided into training, validation, and test datasets according to a 66%/17%/17% split. We trained a modified U-Net, applying transfer learning from a VGG16 image classification model trained on ImageNet. The Dice coefficient and 95% Hausdorff distance on the test set for each organ was compared to a commercial atlas-based segmentation model using the Wilcoxon signed-rank test.

RESULTS

On the test dataset, the median Dice coefficients for the CNN model vs. the multi-atlas model were 71% vs. 67% for the spinal cord, 96% vs. 94% for the right lung, 96%vs. 94% for the left lung, 91% vs. 85% for the heart, and 63% vs. 37% for the esophagus. The median 95% Hausdorff distances were 9.5  mm vs. 25.3 mm, 5.1  mm vs. 8.1 mm, 4.0  mm vs. 8.0 mm, 9.8  mm vs. 15.8 mm, and 9.2 mm vs. 20.0 mm for the respective organs. The results all favored the CNN model (P < 0.05).

CONCLUSIONS

A 2D CNN can achieve superior results to commercial atlas-based software for OAR segmentation utilizing non-domain transfer learning, which has potential utility for quality assurance and expediting patient care.

摘要

目的

危及器官(OARs)的分割是放射肿瘤学工作流程的重要组成部分。通常分割的胸部 OAR 包括心脏、食管、脊髓和肺。本研究评估了一种用于自动分割这些 OAR 的卷积神经网络(CNN)。

方法

该数据集是从包含所有五个感兴趣的 OAR 的连续放射治疗计划中回顾性创建的,包括 168 名患者的 22411 个 CT 切片。根据 66%/17%/17%的分割,将患者分为训练、验证和测试数据集。我们训练了一个修改后的 U-Net,应用了从在 ImageNet 上训练的 VGG16 图像分类模型进行的迁移学习。使用 Wilcoxon 符号秩检验,将测试集中每个器官的 Dice 系数和 95%Hausdorff 距离与基于商业图谱的分割模型进行比较。

结果

在测试数据集上,CNN 模型与多图谱模型的中位数 Dice 系数分别为脊髓为 71%比 67%,右肺为 96%比 94%,左肺为 96%比 94%,心脏为 91%比 85%,食管为 63%比 37%。中位数 95%Hausdorff 距离分别为 9.5 毫米比 25.3 毫米,5.1 毫米比 8.1 毫米,4.0 毫米比 8.0 毫米,9.8 毫米比 15.8 毫米,9.2 毫米比 20.0 毫米,分别为相应的器官。所有结果都有利于 CNN 模型(P<0.05)。

结论

利用非领域转移学习,二维 CNN 可以为 OAR 分割获得优于商业图谱软件的结果,这对于质量保证和加快患者护理具有潜在的应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2aeb/7324695/a823152617f8/ACM2-21-108-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验