Sharp Gregory, Fritscher Karl D, Pekar Vladimir, Peroni Marta, Shusharina Nadya, Veeraraghavan Harini, Yang Jinzhong
Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts 02114.
Philips Healthcare, Markham, Ontario 6LC 2S3, Canada.
Med Phys. 2014 May;41(5):050902. doi: 10.1118/1.4871620.
Due to rapid advances in radiation therapy (RT), especially image guidance and treatment adaptation, a fast and accurate segmentation of medical images is a very important part of the treatment. Manual delineation of target volumes and organs at risk is still the standard routine for most clinics, even though it is time consuming and prone to intra- and interobserver variations. Automated segmentation methods seek to reduce delineation workload and unify the organ boundary definition. In this paper, the authors review the current autosegmentation methods particularly relevant for applications in RT. The authors outline the methods' strengths and limitations and propose strategies that could lead to wider acceptance of autosegmentation in routine clinical practice. The authors conclude that currently, autosegmentation technology in RT planning is an efficient tool for the clinicians to provide them with a good starting point for review and adjustment. Modern hardware platforms including GPUs allow most of the autosegmentation tasks to be done in a range of a few minutes. In the nearest future, improvements in CT-based autosegmentation tools will be achieved through standardization of imaging and contouring protocols. In the longer term, the authors expect a wider use of multimodality approaches and better understanding of correlation of imaging with biology and pathology.
由于放射治疗(RT)的迅速发展,尤其是图像引导和治疗适应性方面,医学图像的快速准确分割是治疗中非常重要的一部分。尽管手动勾画靶区体积和危及器官仍然是大多数诊所的标准常规操作,但它既耗时又容易出现观察者内和观察者间的差异。自动分割方法旨在减少勾画工作量并统一器官边界定义。在本文中,作者回顾了当前与RT应用特别相关的自动分割方法。作者概述了这些方法的优点和局限性,并提出了可能导致自动分割在常规临床实践中更广泛接受的策略。作者得出结论,目前,RT计划中的自动分割技术是一种有效的工具,可为临床医生提供一个良好的审查和调整起点。包括GPU在内的现代硬件平台使大多数自动分割任务能够在几分钟内完成。在不久的将来,基于CT的自动分割工具将通过成像和轮廓协议的标准化得到改进。从长远来看,作者预计多模态方法将得到更广泛的应用,并且对成像与生物学和病理学相关性的理解会更好。