Suppr超能文献

基于全嵌套网络的深度学习自动磁共振前列腺分割

Automatic magnetic resonance prostate segmentation by deep learning with holistically nested networks.

作者信息

Cheng Ruida, Roth Holger R, Lay Nathan, Lu Le, Turkbey Baris, Gandler William, McCreedy Evan S, Pohida Tom, Pinto Peter A, Choyke Peter, McAuliffe Matthew J, Summers Ronald M

机构信息

Imaging Sciences Laboratory, Center of Information Technology, NIH, Bethesda, Maryland, United States.

Imaging Biomarkers and CAD Laboratory, Clinical Center, NIH, Bethesda, Maryland, United States.

出版信息

J Med Imaging (Bellingham). 2017 Oct;4(4):041302. doi: 10.1117/1.JMI.4.4.041302. Epub 2017 Aug 21.

Abstract

Accurate automatic segmentation of the prostate in magnetic resonance images (MRI) is a challenging task due to the high variability of prostate anatomic structure. Artifacts such as noise and similar signal intensity of tissues around the prostate boundary inhibit traditional segmentation methods from achieving high accuracy. We investigate both patch-based and holistic (image-to-image) deep-learning methods for segmentation of the prostate. First, we introduce a patch-based convolutional network that aims to refine the prostate contour which provides an initialization. Second, we propose a method for end-to-end prostate segmentation by integrating holistically nested edge detection with fully convolutional networks. Holistically nested networks (HNN) automatically learn a hierarchical representation that can improve prostate boundary detection. Quantitative evaluation is performed on the MRI scans of 250 patients in fivefold cross-validation. The proposed enhanced HNN model achieves a mean ± standard deviation. A Dice similarity coefficient (DSC) of [Formula: see text] and a mean Jaccard similarity coefficient (IoU) of [Formula: see text] are used to calculate without trimming any end slices. The proposed holistic model significantly ([Formula: see text]) outperforms a patch-based AlexNet model by 9% in DSC and 13% in IoU. Overall, the method achieves state-of-the-art performance as compared with other MRI prostate segmentation methods in the literature.

摘要

由于前列腺解剖结构的高度变异性,在磁共振图像(MRI)中对前列腺进行准确的自动分割是一项具有挑战性的任务。诸如噪声以及前列腺边界周围组织相似信号强度等伪影,阻碍了传统分割方法实现高精度。我们研究了基于补丁和整体(图像到图像)的深度学习方法用于前列腺分割。首先,我们引入了一个基于补丁的卷积网络,旨在细化提供初始化的前列腺轮廓。其次,我们提出了一种通过将整体嵌套边缘检测与全卷积网络相结合来进行端到端前列腺分割的方法。整体嵌套网络(HNN)自动学习一种分层表示,可改善前列腺边界检测。在对250名患者的MRI扫描进行五折交叉验证时进行了定量评估。所提出的增强HNN模型实现了均值±标准差。使用[公式:见正文]的骰子相似系数(DSC)和[公式:见正文]的平均杰卡德相似系数(IoU)进行计算,且不修剪任何末端切片。所提出的整体模型在DSC方面比基于补丁的AlexNet模型显著([公式:见正文])高出9%,在IoU方面高出13%。总体而言,与文献中的其他MRI前列腺分割方法相比,该方法达到了当前的先进性能。

相似文献

1
Automatic magnetic resonance prostate segmentation by deep learning with holistically nested networks.
J Med Imaging (Bellingham). 2017 Oct;4(4):041302. doi: 10.1117/1.JMI.4.4.041302. Epub 2017 Aug 21.
2
Brain tumor segmentation using holistically nested neural networks in MRI images.
Med Phys. 2017 Oct;44(10):5234-5243. doi: 10.1002/mp.12481. Epub 2017 Aug 20.
3
Spatial aggregation of holistically-nested convolutional neural networks for automated pancreas localization and segmentation.
Med Image Anal. 2018 Apr;45:94-107. doi: 10.1016/j.media.2018.01.006. Epub 2018 Feb 1.
4
Fully automated prostate whole gland and central gland segmentation on MRI using holistically nested networks with short connections.
J Med Imaging (Bellingham). 2019 Apr;6(2):024007. doi: 10.1117/1.JMI.6.2.024007. Epub 2019 Jun 5.
5
Superpixel-based deep convolutional neural networks and active contour model for automatic prostate segmentation on 3D MRI scans.
Med Biol Eng Comput. 2020 Sep;58(9):1947-1964. doi: 10.1007/s11517-020-02199-5. Epub 2020 Jun 21.
6
Medical image segmentation and reconstruction of prostate tumor based on 3D AlexNet.
Comput Methods Programs Biomed. 2021 Mar;200:105878. doi: 10.1016/j.cmpb.2020.105878. Epub 2020 Nov 27.
7
Automatic liver segmentation by integrating fully convolutional networks into active contour models.
Med Phys. 2019 Oct;46(10):4455-4469. doi: 10.1002/mp.13735. Epub 2019 Aug 16.
8
PSNet: prostate segmentation on MRI based on a convolutional neural network.
J Med Imaging (Bellingham). 2018 Apr;5(2):021208. doi: 10.1117/1.JMI.5.2.021208. Epub 2018 Jan 17.
9
Automatic segmentation of the prostate on CT images using deep learning and multi-atlas fusion.
Proc SPIE Int Soc Opt Eng. 2017 Feb;10133. doi: 10.1117/12.2255755. Epub 2017 Feb 24.
10
Evaluation of Deep Neural Networks for Semantic Segmentation of Prostate in T2W MRI.
Sensors (Basel). 2020 Jun 3;20(11):3183. doi: 10.3390/s20113183.

引用本文的文献

1
Deep Learning Prostate MRI Segmentation Accuracy and Robustness: A Systematic Review.
Radiol Artif Intell. 2024 Jul;6(4):e230138. doi: 10.1148/ryai.230138.
3
Automatic zonal segmentation of the prostate from 2D and 3D T2-weighted MRI and evaluation for clinical use.
J Med Imaging (Bellingham). 2022 Mar;9(2):024001. doi: 10.1117/1.JMI.9.2.024001. Epub 2022 Mar 14.
4
Deep Learning Enables Prostate MRI Segmentation: A Large Cohort Evaluation With Inter-Rater Variability Analysis.
Front Oncol. 2021 Dec 21;11:801876. doi: 10.3389/fonc.2021.801876. eCollection 2021.
5
Automatic Segmentation of Pelvic Cancers Using Deep Learning: State-of-the-Art Approaches and Challenges.
Diagnostics (Basel). 2021 Oct 22;11(11):1964. doi: 10.3390/diagnostics11111964.
6
Multiparametric MRI and Radiomics in Prostate Cancer: A Review of the Current Literature.
Diagnostics (Basel). 2021 Oct 3;11(10):1829. doi: 10.3390/diagnostics11101829.
7
The role of artificial intelligence in medical imaging research.
BJR Open. 2019 Nov 28;2(1):20190031. doi: 10.1259/bjro.20190031. eCollection 2020.
8
Evaluation of Multimodal Algorithms for the Segmentation of Multiparametric MRI Prostate Images.
Comput Math Methods Med. 2020 Oct 20;2020:8861035. doi: 10.1155/2020/8861035. eCollection 2020.
9
Data Augmentation and Transfer Learning to Improve Generalizability of an Automated Prostate Segmentation Model.
AJR Am J Roentgenol. 2020 Dec;215(6):1403-1410. doi: 10.2214/AJR.19.22347. Epub 2020 Oct 14.
10
Automatic contouring system for cervical cancer using convolutional neural networks.
Med Phys. 2020 Nov;47(11):5648-5658. doi: 10.1002/mp.14467. Epub 2020 Oct 9.

本文引用的文献

1
Gland and Zonal Segmentation of Prostate on T2W MR Images.
J Digit Imaging. 2016 Dec;29(6):730-736. doi: 10.1007/s10278-016-9890-0.
2
Fully Convolutional Networks for Semantic Segmentation.
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651. doi: 10.1109/TPAMI.2016.2572683. Epub 2016 May 24.
3
Deformable MR Prostate Segmentation via Deep Feature Learning and Sparse Patch Matching.
IEEE Trans Med Imaging. 2016 Apr;35(4):1077-89. doi: 10.1109/TMI.2015.2508280. Epub 2015 Dec 11.
4
Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool.
BMC Med Imaging. 2015 Aug 12;15:29. doi: 10.1186/s12880-015-0068-x.
6
Representation learning: a unified deep learning framework for automatic prostate MR segmentation.
Med Image Comput Comput Assist Interv. 2013;16(Pt 2):254-61. doi: 10.1007/978-3-642-40763-5_32.
7
Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge.
Med Image Anal. 2014 Feb;18(2):359-73. doi: 10.1016/j.media.2013.12.002. Epub 2013 Dec 25.
8
Automated prostate segmentation in whole-body MRI scans for epidemiological studies.
Phys Med Biol. 2013 Sep 7;58(17):5899-915. doi: 10.1088/0031-9155/58/17/5899. Epub 2013 Aug 6.
9
Multifeature landmark-free active appearance models: application to prostate MRI segmentation.
IEEE Trans Med Imaging. 2012 Aug;31(8):1638-50. doi: 10.1109/TMI.2012.2201498. Epub 2012 May 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验