Cheng Ruida, Roth Holger R, Lay Nathan, Lu Le, Turkbey Baris, Gandler William, McCreedy Evan S, Pohida Tom, Pinto Peter A, Choyke Peter, McAuliffe Matthew J, Summers Ronald M
Imaging Sciences Laboratory, Center of Information Technology, NIH, Bethesda, Maryland, United States.
Imaging Biomarkers and CAD Laboratory, Clinical Center, NIH, Bethesda, Maryland, United States.
J Med Imaging (Bellingham). 2017 Oct;4(4):041302. doi: 10.1117/1.JMI.4.4.041302. Epub 2017 Aug 21.
Accurate automatic segmentation of the prostate in magnetic resonance images (MRI) is a challenging task due to the high variability of prostate anatomic structure. Artifacts such as noise and similar signal intensity of tissues around the prostate boundary inhibit traditional segmentation methods from achieving high accuracy. We investigate both patch-based and holistic (image-to-image) deep-learning methods for segmentation of the prostate. First, we introduce a patch-based convolutional network that aims to refine the prostate contour which provides an initialization. Second, we propose a method for end-to-end prostate segmentation by integrating holistically nested edge detection with fully convolutional networks. Holistically nested networks (HNN) automatically learn a hierarchical representation that can improve prostate boundary detection. Quantitative evaluation is performed on the MRI scans of 250 patients in fivefold cross-validation. The proposed enhanced HNN model achieves a mean ± standard deviation. A Dice similarity coefficient (DSC) of [Formula: see text] and a mean Jaccard similarity coefficient (IoU) of [Formula: see text] are used to calculate without trimming any end slices. The proposed holistic model significantly ([Formula: see text]) outperforms a patch-based AlexNet model by 9% in DSC and 13% in IoU. Overall, the method achieves state-of-the-art performance as compared with other MRI prostate segmentation methods in the literature.
由于前列腺解剖结构的高度变异性,在磁共振图像(MRI)中对前列腺进行准确的自动分割是一项具有挑战性的任务。诸如噪声以及前列腺边界周围组织相似信号强度等伪影,阻碍了传统分割方法实现高精度。我们研究了基于补丁和整体(图像到图像)的深度学习方法用于前列腺分割。首先,我们引入了一个基于补丁的卷积网络,旨在细化提供初始化的前列腺轮廓。其次,我们提出了一种通过将整体嵌套边缘检测与全卷积网络相结合来进行端到端前列腺分割的方法。整体嵌套网络(HNN)自动学习一种分层表示,可改善前列腺边界检测。在对250名患者的MRI扫描进行五折交叉验证时进行了定量评估。所提出的增强HNN模型实现了均值±标准差。使用[公式:见正文]的骰子相似系数(DSC)和[公式:见正文]的平均杰卡德相似系数(IoU)进行计算,且不修剪任何末端切片。所提出的整体模型在DSC方面比基于补丁的AlexNet模型显著([公式:见正文])高出9%,在IoU方面高出13%。总体而言,与文献中的其他MRI前列腺分割方法相比,该方法达到了当前的先进性能。