Suppr超能文献

利用来自不同来源的数据评估和改进津巴布韦预防艾滋病毒母婴传播方案:一项数据整合工作。

Use of data from various sources to evaluate and improve the prevention of mother-to-child transmission of HIV programme in Zimbabwe: a data integration exercise.

机构信息

Centre for Sexual Health and HIV AIDS Research, Harare, Zimbabwe.

Liverpool School of Tropical Medicine, Liverpool, UK.

出版信息

J Int AIDS Soc. 2020 Jun;23 Suppl 3(Suppl 3):e25524. doi: 10.1002/jia2.25524.

Abstract

INTRODUCTION

Despite improvements in prevention of mother-to-child transmission (PMTCT) of HIV outcomes, there remain unacceptably high numbers of mother-to-child transmissions (MTCT) of HIV. Programmes and research collect multiple sources of PMTCT data, yet this data is rarely integrated in a systematic way. We conducted a data integration exercise to evaluate the Zimbabwe national PMTCT programme and derive lessons for strengthening implementation and documentation.

METHODS

We used data from four sources: research, Ministry of Health and Child Care (MOHCC) programme, Implementer - Organization for Public Health Interventions and Development, and modelling. Research data came from serial population representative cross-sectional surveys that evaluated the national PMTCT programme in 2012, 2014 and 2017/2018. MOHCC and Organization for Public Health Interventions and Development collected data with similar indicators for the period 2018 to 2019. Modelling data from 2017/18 UNAIDS Spectrum was used. We systematically integrated data from the different sources to explore PMTCT programme performance at each step of the cascade. We also conducted spatial analysis to identify hotspots of MTCT.

RESULTS

We developed cascades for HIV-positive and negative-mothers, and HIV exposed and infected infants to 24 months post-partum. Most data were available on HIV positive mothers. Few data were available 6-8 weeks post-delivery for HIV exposed/infected infants and none were available post-delivery for HIV-negative mothers. The different data sources largely concurred. Antenatal care (ANC) registration was high, although women often presented late. There was variable implementation of PMTCT services, MTCT hotspots were identified. Factors positively associated with MTCT included delayed ANC registration and mobility (use of more than one health facility) during pregnancy/breastfeeding. There was reduced MTCT among women whose partners accompanied them to ANC, and infants receiving antiretroviral prophylaxis. Notably, the largest contribution to MTCT was from postnatal women who had previously tested negative (12/25 in survey data, 17.6% estimated by Spectrum modelling). Data integration enabled formulation of interventions to improve programmes.

CONCLUSIONS

Data integration was feasible and identified gaps in programme implementation/documentation leading to corrective interventions. Incident infections among mothers are the largest contributors to MTCT: there is need to strengthen the prevention cascade among HIV-negative women.

摘要

引言

尽管在预防母婴传播 (PMTCT) 方面取得了进展,但艾滋病毒母婴传播 (MTCT) 的数量仍然高得令人无法接受。方案和研究收集了多个 PMTCT 数据源,但这些数据很少以系统的方式进行整合。我们进行了一次数据整合练习,以评估津巴布韦国家 PMTCT 方案,并从中汲取加强实施和记录的经验教训。

方法

我们使用了来自四个来源的数据:研究、卫生部和儿童保健部 (MOHCC) 方案、实施者-公共卫生干预和发展组织以及建模。研究数据来自于 2012 年、2014 年和 2017/2018 年连续进行的具有代表性的人口横断面调查,评估了国家 PMTCT 方案。MOHCC 和公共卫生干预和发展组织收集了 2018 年至 2019 年期间具有类似指标的数据。使用了 2017/18 年 UNAIDS Spectrum 的建模数据。我们系统地整合了来自不同来源的数据,以探讨在级联的每个步骤中 PMTCT 方案的执行情况。我们还进行了空间分析,以确定 MTCT 的热点。

结果

我们为 HIV 阳性和阴性母亲以及 HIV 暴露和感染婴儿制定了到产后 24 个月的级联。大多数数据可用于 HIV 阳性母亲。只有少数数据可用于产后 6-8 周的 HIV 暴露/感染婴儿,而对于 HIV 阴性母亲,没有任何数据可用。不同的数据源基本一致。虽然妇女经常就诊较晚,但产前保健 (ANC) 的登记率很高。PMTCT 服务的实施情况各不相同,确定了 MTCT 的热点。与 MTCT 呈正相关的因素包括 ANC 登记延迟和怀孕期间/母乳喂养期间的流动性(使用不止一个卫生机构)。与伴侣陪同 ANC 的妇女和接受抗逆转录病毒预防的婴儿相比,MTCT 减少。值得注意的是,产后妇女以前检测结果为阴性(调查数据中有 12/25 例,Spectrum 建模估计为 17.6%),这是 MTCT 的最大贡献者。数据整合能够制定干预措施,以改善方案。

结论

数据整合是可行的,并确定了方案实施/记录中的差距,从而采取了纠正措施。母亲的新发感染是 MTCT 的最大贡献者:需要加强对 HIV 阴性妇女的预防级联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c06/7325515/df9af170ac44/JIA2-23-e25524-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验