Liang Wei, Yamahara Kosuke, Hernando-Erhard Camila, Lagies Simon, Wanner Nicola, Liang Huan, Schell Christoph, Kammerer Bernd, Huber Tobias B, Bork Tillmann
Department of Medicine IV, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China.
Department of Medicine IV, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan.
Kidney Int. 2020 Dec;98(6):1434-1448. doi: 10.1016/j.kint.2020.06.016. Epub 2020 Jun 27.
Podocyte maintenance and stress resistance are exquisitely based on high basal rates of autophagy making these cells a unique model to unravel mechanisms of autophagy regulation. Polyamines have key cellular functions such as proliferation, nucleic acid biosynthesis and autophagy. Here we test whether endogenous spermidine signaling is a driver of basal and dynamic autophagy in podocytes by using genetic and pharmacologic approaches to interfere with different steps of polyamine metabolism. Translational studies revealed altered spermidine signaling in focal segmental glomerulosclerosis in vivo and in vitro. Exogenous spermidine supplementation emerged as new treatment strategy by successfully activating autophagy in vivo via inhibition of EP300, a protein with an essential role in controlling cell growth, cell division and prompting cells to differentiate to take on specialized functions. Surprisingly, gas chromatography-mass spectroscopy based untargeted metabolomics of wild type and autophagy deficient primary podocytes revealed a positive feedback mechanism whereby autophagy itself maintains polyamine metabolism and spermidine synthesis. The transcription factor MAFB acted as an upstream regulator of polyamine metabolism. Thus, our data highlight a novel positive feedback loop of autophagy and spermidine signaling allowing maintenance of high basal levels of autophagy as a key mechanism to sustain the filtration barrier. Hence, spermidine supplementation may emerge as a new therapeutic to restore autophagy in glomerular disease.
足细胞的维持和应激抗性高度依赖于基础自噬率,这使得这些细胞成为揭示自噬调控机制的独特模型。多胺具有关键的细胞功能,如增殖、核酸生物合成和自噬。在这里,我们通过使用遗传和药理学方法干扰多胺代谢的不同步骤,来测试内源性亚精胺信号是否是足细胞基础自噬和动态自噬的驱动因素。转化研究揭示了局灶节段性肾小球硬化症在体内和体外的亚精胺信号改变。外源性亚精胺补充作为一种新的治疗策略出现,它通过抑制EP300在体内成功激活自噬,EP300是一种在控制细胞生长、细胞分裂以及促使细胞分化以发挥特定功能方面起关键作用的蛋白质。令人惊讶的是,基于气相色谱 - 质谱联用的野生型和自噬缺陷型原代足细胞非靶向代谢组学揭示了一种正反馈机制,即自噬本身维持多胺代谢和亚精胺合成。转录因子MAFB作为多胺代谢的上游调节因子。因此,我们的数据突出了自噬和亚精胺信号的一种新型正反馈回路,该回路允许维持高水平的基础自噬,作为维持滤过屏障的关键机制。因此,补充亚精胺可能成为恢复肾小球疾病中自噬的一种新疗法。