Institute of Science and Technology Austria, Klosterneuburg, Austria.
Institute of Science and Technology Austria, Klosterneuburg, Austria.
Cell. 2021 Apr 1;184(7):1914-1928.e19. doi: 10.1016/j.cell.2021.02.017. Epub 2021 Mar 16.
Embryo morphogenesis is impacted by dynamic changes in tissue material properties, which have been proposed to occur via processes akin to phase transitions (PTs). Here, we show that rigidity percolation provides a simple and robust theoretical framework to predict material/structural PTs of embryonic tissues from local cell connectivity. By using percolation theory, combined with directly monitoring dynamic changes in tissue rheology and cell contact mechanics, we demonstrate that the zebrafish blastoderm undergoes a genuine rigidity PT, brought about by a small reduction in adhesion-dependent cell connectivity below a critical value. We quantitatively predict and experimentally verify hallmarks of PTs, including power-law exponents and associated discontinuities of macroscopic observables. Finally, we show that this uniform PT depends on blastoderm cells undergoing meta-synchronous divisions causing random and, consequently, uniform changes in cell connectivity. Collectively, our theoretical and experimental findings reveal the structural basis of material PTs in an organismal context.
胚胎形态发生受组织物质属性动态变化的影响,这些变化被认为是通过类似于相变(PT)的过程发生的。在这里,我们表明,通过使用渗透理论,结合直接监测组织流变学和细胞接触力学的动态变化,刚性渗透为从局部细胞连接预测胚胎组织的材料/结构 PT 提供了一个简单而强大的理论框架。我们证明,斑马鱼胚盘经历了真正的刚性 PT,这是由于在临界值以下,粘附依赖性细胞连接的微小减少引起的。我们定量预测并实验验证了 PT 的特征,包括幂律指数和相关宏观观测的不连续性。最后,我们表明,这种均匀的 PT 取决于胚盘细胞经历元同步分裂,导致细胞连接的随机且因此均匀的变化。总的来说,我们的理论和实验结果揭示了在生物体背景下物质 PT 的结构基础。