Suppr超能文献

用于预测急诊科长时间等待时间的可解释机器学习模型。

Interpretable machine learning models for prolonged Emergency Department wait time prediction.

作者信息

Wang Hao, Sambamoorthi Nethra, Sandlin Devin, Sambamoorthi Usha

机构信息

Department of Emergency Medicine, John Peter Smith Health Network, Integrative Emergency Services, 1500 S. Main St., Fort Worth, TX, 76104, USA.

CRM Portals LLC, Fort Worth, TX, 76126, USA.

出版信息

BMC Health Serv Res. 2025 Mar 18;25(1):403. doi: 10.1186/s12913-025-12535-w.

Abstract

OBJECTIVE

Prolonged Emergency Department (ED) wait times lead to diminished healthcare quality. Utilizing machine learning (ML) to predict patient wait times could aid in ED operational management. Our aim is to perform a comprehensive analysis of ML models for ED wait time prediction, identify key feature importance and associations with prolonged wait times, and interpret prediction model clinical relevance among ED patients.

METHODS

This is a single-centered retrospective study. We included ED patients assigned an Emergency Severity Index (ESI) level of 3 at triage. Patient wait times were categorized as <30 minutes and ≥30 minutes (prolonged wait time). We employed five ML algorithms - cross-validation logistic regression (CVLR), random forest (RF), extreme gradient boosting (XGBoost), artificial neural network (ANN), and support vector machine (SVM) - for predicting patient prolonged wait times. Performance assessment utilized accuracy, recall, precision, F1 score, false positive rate (FPR), and false negative rate (FNR). Furthermore, using XGBoost as an example, model key features and partial dependency plots (PDP) of these key features were illustrated. Shapley additive explanations (SHAP) were employed to interpret model outputs. Additionally, a top key feature interaction analysis was conducted.

RESULTS

Among total 177,665 patients, nearly half of them (48.20%, 85,632) experienced prolonged ED wait times. Though all five ML models exhibited similar performance, minimizing FNR is associated with the most clinical relevance for wait time predictions. The top features influencing patient wait times and gaining the top ranked interactions were ED crowding condition and patient mode of arrival.

CONCLUSIONS

Nearly half of the patients experienced prolonged wait times in the ED. ML models demonstrated acceptable performance, particularly in minimizing FNR when predicting ED wait times. The prediction of prolonged wait times was influenced by multiple interacting factors. Proper application of ML models to clinical practice requires interpreting their predictions of prolonged wait times in the context of clinical significance.

摘要

目的

急诊科(ED)等待时间延长会导致医疗质量下降。利用机器学习(ML)预测患者等待时间有助于急诊科的运营管理。我们的目的是对用于急诊科等待时间预测的ML模型进行全面分析,确定关键特征的重要性以及与延长等待时间的关联,并解读预测模型在急诊科患者中的临床相关性。

方法

这是一项单中心回顾性研究。我们纳入了在分诊时被分配为急诊严重程度指数(ESI)3级的急诊科患者。患者等待时间分为<30分钟和≥30分钟(延长等待时间)。我们采用了五种ML算法——交叉验证逻辑回归(CVLR)、随机森林(RF)、极端梯度提升(XGBoost)、人工神经网络(ANN)和支持向量机(SVM)——来预测患者的延长等待时间。性能评估使用准确率、召回率、精确率、F1分数、假阳性率(FPR)和假阴性率(FNR)。此外,以XGBoost为例,展示了模型的关键特征以及这些关键特征的部分依赖图(PDP)。采用Shapley加法解释(SHAP)来解读模型输出。此外,还进行了顶级关键特征交互分析。

结果

在总共177,665名患者中,近一半(48.20%,85,632名)经历了急诊科等待时间延长。尽管所有五个ML模型表现出相似的性能,但将FNR最小化与等待时间预测的临床相关性最高。影响患者等待时间并获得顶级排名交互的主要特征是急诊科拥挤状况和患者到达方式。

结论

近一半的患者在急诊科经历了等待时间延长。ML模型表现出可接受的性能,特别是在预测急诊科等待时间时将FNR最小化。延长等待时间的预测受到多种相互作用因素的影响。将ML模型正确应用于临床实践需要在临床意义的背景下解读其对延长等待时间的预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c14/11917090/8b26a70339e1/12913_2025_12535_Fig2_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验