Suppr超能文献

简明多基因模型,可根据多组学特征鉴定对药物敏感的肿瘤。

Concise Polygenic Models for Cancer-Specific Identification of Drug-Sensitive Tumors from Their Multi-Omics Profiles.

机构信息

Cancer Research Center of Marseille, INSERM U1068, F-13009 Marseille, France.

Institut Paoli-Calmettes, F-13009 Marseille, France.

出版信息

Biomolecules. 2020 Jun 26;10(6):963. doi: 10.3390/biom10060963.

Abstract

In silico models to predict which tumors will respond to a given drug are necessary for Precision Oncology. However, predictive models are only available for a handful of cases (each case being a given drug acting on tumors of a specific cancer type). A way to generate predictive models for the remaining cases is with suitable machine learning algorithms that are yet to be applied to existing in vitro pharmacogenomics datasets. Here, we apply XGBoost integrated with a stringent feature selection approach, which is an algorithm that is advantageous for these high-dimensional problems. Thus, we identified and validated 118 predictive models for 62 drugs across five cancer types by exploiting four molecular profiles (sequence mutations, copy-number alterations, gene expression, and DNA methylation). Predictive models were found in each cancer type and with every molecular profile. On average, no omics profile or cancer type obtained models with higher predictive accuracy than the rest. However, within a given cancer type, some molecular profiles were overrepresented among predictive models. For instance, CNA profiles were predictive in breast invasive carcinoma (BRCA) cell lines, but not in small cell lung cancer (SCLC) cell lines where gene expression (GEX) and DNA methylation profiles were the most predictive. Lastly, we identified the best XGBoost model per cancer type and analyzed their selected features. For each model, some of the genes in the selected list had already been found to be individually linked to the response to that drug, providing additional evidence of the usefulness of these models and the merits of the feature selection scheme.

摘要

为实现精准肿瘤学,需要建立预测哪些肿瘤对特定药物有反应的计算模型。然而,目前仅有少量病例(每种情况下都是一种特定药物作用于特定癌症类型的肿瘤)具有预测模型。对于其余病例,可以使用尚未应用于现有体外药物基因组学数据集的合适机器学习算法来生成预测模型。在这里,我们应用了 XGBoost 并结合了严格的特征选择方法,这是一种对于此类高维问题具有优势的算法。因此,我们通过利用四个分子谱(序列突变、拷贝数改变、基因表达和 DNA 甲基化),为五种癌症类型的 62 种药物识别和验证了 118 个预测模型。在每种癌症类型和每个分子谱中都找到了预测模型。平均而言,没有任何组学谱或癌症类型的模型比其他模型具有更高的预测准确性。然而,在给定的癌症类型内,一些分子谱在预测模型中更为突出。例如,CNA 谱在乳腺浸润性癌(BRCA)细胞系中具有预测性,但在小细胞肺癌(SCLC)细胞系中不具有预测性,其中基因表达(GEX)和 DNA 甲基化谱是最具预测性的。最后,我们确定了每种癌症类型的最佳 XGBoost 模型,并分析了它们选择的特征。对于每个模型,所选列表中的一些基因已经被发现与对该药物的反应有关,这为这些模型的有用性以及特征选择方案的优点提供了额外的证据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验