Suppr超能文献

利用美国国立癌症研究所-ALMANAC数据预测癌症药物组合的协同作用

Predicting Synergism of Cancer Drug Combinations Using NCI-ALMANAC Data.

作者信息

Sidorov Pavel, Naulaerts Stefan, Ariey-Bonnet Jérémy, Pasquier Eddy, Ballester Pedro J

机构信息

CRCM, INSERM, Cancer Research Center of Marseille, Institut Paoli-Calmettes, Aix-Marseille Univ, CNRS, Marseille, France.

Department of Tumor Immunology, Institut de Duve, Bruxelles, Belgium.

出版信息

Front Chem. 2019 Jul 16;7:509. doi: 10.3389/fchem.2019.00509. eCollection 2019.

Abstract

Drug combinations are of great interest for cancer treatment. Unfortunately, the discovery of synergistic combinations by purely experimental means is only feasible on small sets of drugs. modeling methods can substantially widen this search by providing tools able to predict which of all possible combinations in a large compound library are synergistic. Here we investigate to which extent drug combination synergy can be predicted by exploiting the largest available dataset to date (NCI-ALMANAC, with over 290,000 synergy determinations). Each cell line is modeled using primarily two machine learning techniques, Random Forest (RF) and Extreme Gradient Boosting (XGBoost), on the datasets provided by NCI-ALMANAC. This large-scale predictive modeling study comprises more than 5,000 pair-wise drug combinations, 60 cell lines, 4 types of models, and 5 types of chemical features. The application of a powerful, yet uncommonly used, RF-specific technique for reliability prediction is also investigated. The evaluation of these models shows that it is possible to predict the synergy of unseen drug combinations with high accuracy (Pearson correlations between 0.43 and 0.86 depending on the considered cell line, with XGBoost providing slightly better predictions than RF). We have also found that restricting to the most reliable synergy predictions results in at least 2-fold error decrease with respect to employing the best learning algorithm without any reliability estimation. Alkylating agents, tyrosine kinase inhibitors and topoisomerase inhibitors are the drugs whose synergy with other partner drugs are better predicted by the models. Despite its leading size, NCI-ALMANAC comprises an extremely small part of all conceivable combinations. Given their accuracy and reliability estimation, the developed models should drastically reduce the number of required tests by predicting which of the considered combinations are likely to be synergistic.

摘要

药物组合在癌症治疗中备受关注。不幸的是,通过纯粹的实验手段发现协同组合仅在少量药物上可行。建模方法可以通过提供工具来大幅拓宽这种搜索范围,这些工具能够预测大型化合物库中所有可能组合中的哪些是协同的。在这里,我们通过利用迄今为止最大的可用数据集(NCI - ALMANAC,有超过290,000个协同性测定)来研究药物组合协同性在多大程度上可以被预测。在NCI - ALMANAC提供的数据集上,主要使用两种机器学习技术,随机森林(RF)和极端梯度提升(XGBoost)对每个细胞系进行建模。这项大规模预测建模研究包括超过5000种成对药物组合、60种细胞系、4种模型类型和5种化学特征类型。还研究了一种强大但不常用的针对RF的可靠性预测技术的应用。对这些模型的评估表明,可以高精度地预测未见过的药物组合的协同性(取决于所考虑的细胞系,皮尔逊相关系数在0.43至0.86之间,XGBoost提供的预测略优于RF)。我们还发现,相对于使用没有任何可靠性估计的最佳学习算法,限制在最可靠的协同性预测上会使误差至少降低两倍。烷基化剂、酪氨酸激酶抑制剂和拓扑异构酶抑制剂是其与其他伙伴药物的协同性能被模型更好预测的药物。尽管NCI - ALMANAC规模领先,但它只包含所有可想象组合中的极小一部分。鉴于其准确性和可靠性估计,所开发的模型通过预测所考虑的组合中哪些可能是协同的,应该能大幅减少所需测试的数量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f83/6646421/39846e5891e7/fchem-07-00509-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验