文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于弱射频辐射对人类和动物细胞影响的生物电磁学监督机器学习算法:预测模型和特征选择技术。

Supervised Machine Learning Algorithms for Bioelectromagnetics: Prediction Models and Feature Selection Techniques Using Data from Weak Radiofrequency Radiation Effect on Human and Animals Cells.

机构信息

Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC 3010, Australia.

出版信息

Int J Environ Res Public Health. 2020 Jun 26;17(12):4595. doi: 10.3390/ijerph17124595.


DOI:10.3390/ijerph17124595
PMID:32604814
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7345599/
Abstract

The emergence of new technologies to incorporate and analyze data with high-performance computing has expanded our capability to accurately predict any incident. Supervised Machine learning (ML) can be utilized for a fast and consistent prediction, and to obtain the underlying pattern of the data better. We develop a prediction strategy, for the first time, using supervised ML to observe the possible impact of weak radiofrequency electromagnetic field (RF-EMF) on human and animal cells without performing in-vitro laboratory experiments. We extracted laboratory experimental data from 300 peer-reviewed scientific publications (1990-2015) describing 1127 experimental case studies of human and animal cells response to RF-EMF. We used domain knowledge, Principal Component Analysis (PCA), and the Chi-squared feature selection techniques to select six optimal features for computation and cost-efficiency. We then develop grouping or clustering strategies to allocate these selected features into five different laboratory experiment scenarios. The dataset has been tested with ten different classifiers, and the outputs are estimated using the k-fold cross-validation method. The assessment of a classifier's prediction performance is critical for assessing its suitability. Hence, a detailed comparison of the percentage of the model accuracy (PCC), Root Mean Squared Error (RMSE), precision, sensitivity (recall), 1 - specificity, Area under the ROC Curve (AUC), and precision-recall (PRC Area) for each classification method were observed. Our findings suggest that the Random Forest algorithm exceeds in all groups in terms of all performance measures and shows AUC = 0.903 where k-fold = 60. A robust correlation was observed in the specific absorption rate (SAR) with frequency and cumulative effect or exposure time with SAR×time (impact of accumulated SAR within the exposure time) of RF-EMF. In contrast, the relationship between frequency and exposure time was not significant. In future, with more experimental data, the sample size can be increased, leading to more accurate work.

摘要

新技术的出现使得我们能够利用高性能计算来整合和分析数据,从而更准确地预测任何事件。监督机器学习(ML)可用于快速、一致地进行预测,并更好地获取数据的潜在模式。我们首次开发了一种预测策略,利用监督 ML 来观察弱射频电磁场(RF-EMF)对人体和动物细胞可能产生的影响,而无需进行体外实验室实验。我们从 300 篇同行评议的科学出版物中提取了实验室实验数据(1990-2015 年),这些出版物描述了 1127 个人体和动物细胞对 RF-EMF 反应的实验案例研究。我们利用领域知识、主成分分析(PCA)和卡方特征选择技术,选择了六个用于计算和成本效益的最佳特征。然后,我们开发了分组或聚类策略,将这些选定的特征分配到五个不同的实验室实验场景中。该数据集已经使用了十种不同的分类器进行了测试,输出结果使用 k 折交叉验证方法进行估计。评估分类器的预测性能对于评估其适用性至关重要。因此,我们观察了每种分类方法的模型准确性百分比(PCC)、均方根误差(RMSE)、精度、灵敏度(召回率)、1-特异性、ROC 曲线下面积(AUC)和精度-召回率(PRC 面积)的详细比较。我们的研究结果表明,随机森林算法在所有组中都表现出色,在所有性能指标上均超过了其他算法,并且 AUC = 0.903,其中 k 折 = 60。RF-EMF 的比吸收率(SAR)与频率和累积效应或暴露时间与 SAR×时间(暴露时间内累积 SAR 的影响)之间存在很强的相关性。相比之下,频率与暴露时间之间的关系不显著。在未来,随着更多的实验数据,样本量可以增加,从而使工作更加准确。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b772/7345599/62e3b721448d/ijerph-17-04595-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b772/7345599/b7469fadde98/ijerph-17-04595-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b772/7345599/59ed690735f8/ijerph-17-04595-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b772/7345599/fe9cfd5b5d12/ijerph-17-04595-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b772/7345599/8099aad41e84/ijerph-17-04595-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b772/7345599/ddf5b9c5a48e/ijerph-17-04595-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b772/7345599/0a51393751a5/ijerph-17-04595-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b772/7345599/62e3b721448d/ijerph-17-04595-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b772/7345599/b7469fadde98/ijerph-17-04595-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b772/7345599/59ed690735f8/ijerph-17-04595-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b772/7345599/fe9cfd5b5d12/ijerph-17-04595-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b772/7345599/8099aad41e84/ijerph-17-04595-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b772/7345599/ddf5b9c5a48e/ijerph-17-04595-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b772/7345599/0a51393751a5/ijerph-17-04595-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b772/7345599/62e3b721448d/ijerph-17-04595-g007.jpg

相似文献

[1]
Supervised Machine Learning Algorithms for Bioelectromagnetics: Prediction Models and Feature Selection Techniques Using Data from Weak Radiofrequency Radiation Effect on Human and Animals Cells.

Int J Environ Res Public Health. 2020-6-26

[2]
Lessons learned from the application of machine learning to studies on plant response to radio-frequency.

Environ Res. 2019-8-16

[3]
Application of information theoretic feature selection and machine learning methods for the development of genetic risk prediction models.

Sci Rep. 2021-12-2

[4]
Effects of radiofrequency electromagnetic field (RF-EMF) exposure on male fertility: A systematic review of experimental studies on non-human mammals and human sperm in vitro.

Environ Int. 2024-3

[5]
Assessing predictive performance of supervised machine learning algorithms for a diamond pricing model.

Sci Rep. 2023-10-12

[6]
Comparative analysis of supervised learning algorithms for prediction of cardiovascular diseases.

Technol Health Care. 2024

[7]
Machine learning-based identification of radiofrequency electromagnetic radiation (RF-EMR) effect on brain morphology: a preliminary study.

Med Biol Eng Comput. 2020-8

[8]
Effects of Radiofrequency Electromagnetic Field (RF-EMF) exposure on pregnancy and birth outcomes: A systematic review of experimental studies on non-human mammals.

Environ Int. 2023-10

[9]
[Constructing a predictive model for the death risk of patients with septic shock based on supervised machine learning algorithms].

Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2024-4

[10]
Heart disease prediction using supervised machine learning algorithms: Performance analysis and comparison.

Comput Biol Med. 2021-9

引用本文的文献

[1]
Interactions between electromagnetic radiation and biological systems.

iScience. 2024-2-10

[2]
Predicting Space Radiation Single Ion Exposure in Rodents: A Machine Learning Approach.

Front Syst Neurosci. 2021-10-15

本文引用的文献

[1]
Forecasting Corn Yield With Machine Learning Ensembles.

Front Plant Sci. 2020-7-31

[2]
Sensor-Aided EMF Exposure Assessments in an Urban Environment Using Artificial Neural Networks.

Int J Environ Res Public Health. 2020-4-28

[3]
A meta-analysis of in vitro exposures to weak radiofrequency radiation exposure from mobile phones (1990-2015).

Environ Res. 2020-2-13

[4]
The Effects of Mobile Phone Radiofrequency Radiation on Cochlear Stria Marginal Cells in Sprague-Dawley Rats.

Bioelectromagnetics. 2020-4

[5]
Cluster Analysis of Residential Personal Exposure to ELF Magnetic Field in Children: Effect of Environmental Variables.

Int J Environ Res Public Health. 2019-11-8

[6]
Machine learning algorithm validation with a limited sample size.

PLoS One. 2019-11-7

[7]
Lessons learned from the application of machine learning to studies on plant response to radio-frequency.

Environ Res. 2019-8-16

[8]
Possible Effects of Radiofrequency Electromagnetic Field Exposure on Central Nerve System.

Biomol Ther (Seoul). 2019-5-1

[9]
A Prospective Cohort Study of Adolescents' Memory Performance and Individual Brain Dose of Microwave Radiation from Wireless Communication.

Environ Health Perspect. 2018-7-23

[10]
Meeting the imperative to accelerate environmental bioelectromagnetics research.

Environ Res. 2018-2-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索