Prelich Matthew T, Matar Mona, Gokoglu Suleyman A, Gallo Christopher A, Schepelmann Alexander, Iqbal Asad K, Lewandowski Beth E, Britten Richard A, Prabhu R K, Myers Jerry G
NASA Glenn Research Center, Cleveland, OH, United States.
ZIN Technologies, Inc., Cleveland, OH, United States.
Front Syst Neurosci. 2021 Oct 15;15:715433. doi: 10.3389/fnsys.2021.715433. eCollection 2021.
This study presents a data-driven machine learning approach to predict individual Galactic Cosmic Radiation (GCR) ion exposure for He, O, Si, Ti, or Fe up to 150 mGy, based on Attentional Set-shifting (ATSET) experimental tests. The ATSET assay consists of a series of cognitive performance tasks on irradiated male Wistar rats. The GCR ion doses represent the expected cumulative radiation astronauts may receive during a Mars mission on an individual ion basis. The primary objective is to synthesize and assess predictive models on a per-subject level through Machine Learning (ML) classifiers. The raw cognitive performance data from individual rodent subjects are used as features to train the models and to explore the capabilities of three different ML techniques for elucidating a range of correlations between received radiation on rodents and their performance outcomes. The analysis employs scores of selected input features and different normalization approaches which yield varying degrees of model performance. The current study shows that support vector machine, Gaussian naive Bayes, and random forest models are capable of predicting individual ion exposure using ATSET scores where corresponding Matthews correlation coefficients and F scores reflect model performance exceeding random chance. The study suggests a decremental effect on cognitive performance in rodents due to ≤150 mGy of single ion exposure, inasmuch as the models can discriminate between 0 mGy and any exposure level in the performance score feature space. A number of observations about the utility and limitations in specific normalization routines and evaluation scores are examined as well as best practices for ML with imbalanced datasets observed.
本研究基于注意力转移(ATSET)实验测试,提出了一种数据驱动的机器学习方法,用于预测个体在高达150毫戈瑞剂量下氦、氧、硅、钛或铁的银河宇宙辐射(GCR)离子暴露情况。ATSET实验由一系列针对受辐照雄性Wistar大鼠的认知性能任务组成。GCR离子剂量代表了宇航员在火星任务期间可能在个体离子基础上接受的预期累积辐射。主要目标是通过机器学习(ML)分类器在个体层面上合成和评估预测模型。来自单个啮齿动物受试者的原始认知性能数据被用作特征来训练模型,并探索三种不同ML技术在阐明啮齿动物接受的辐射与其性能结果之间一系列相关性方面的能力。分析采用了选定输入特征的分数和不同的归一化方法,这些方法产生了不同程度的模型性能。当前研究表明,支持向量机、高斯朴素贝叶斯和随机森林模型能够使用ATSET分数预测个体离子暴露,其中相应的马修斯相关系数和F分数反映了模型性能超过随机概率。该研究表明,由于≤150毫戈瑞的单离子暴露,啮齿动物的认知性能会有递减效应,因为模型能够在性能分数特征空间中区分0毫戈瑞和任何暴露水平。还研究了关于特定归一化程序和评估分数的效用和局限性的一些观察结果,以及观察到的不平衡数据集的ML最佳实践。