Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
Chem Soc Rev. 2015 Oct 7;44(17):6187-229. doi: 10.1039/c4cs00371c. Epub 2015 Jun 2.
Centrifugal microfluidics has evolved into a mature technology. Several major diagnostic companies either have products on the market or are currently evaluating centrifugal microfluidics for product development. The fields of application are widespread and include clinical chemistry, immunodiagnostics and protein analysis, cell handling, molecular diagnostics, as well as food, water, and soil analysis. Nevertheless, new fluidic functions and applications that expand the possibilities of centrifugal microfluidics are being introduced at a high pace. In this review, we first present an up-to-date comprehensive overview of centrifugal microfluidic unit operations. Then, we introduce the term "process chain" to review how these unit operations can be combined for the automation of laboratory workflows. Such aggregation of basic functionalities enables efficient fluidic design at a higher level of integration. Furthermore, we analyze how novel, ground-breaking unit operations may foster the integration of more complex applications. Among these are the storage of pneumatic energy to realize complex switching sequences or to pump liquids radially inward, as well as the complete pre-storage and release of reagents. In this context, centrifugal microfluidics provides major advantages over other microfluidic actuation principles: the pulse-free inertial liquid propulsion provided by centrifugal microfluidics allows for closed fluidic systems that are free of any interfaces to external pumps. Processed volumes are easily scalable from nanoliters to milliliters. Volume forces can be adjusted by rotation and thus, even for very small volumes, surface forces may easily be overcome in the centrifugal gravity field which enables the efficient separation of nanoliter volumes from channels, chambers or sensor matrixes as well as the removal of any disturbing bubbles. In summary, centrifugal microfluidics takes advantage of a comprehensive set of fluidic unit operations such as liquid transport, metering, mixing and valving. The available unit operations cover the entire range of automated liquid handling requirements and enable efficient miniaturization, parallelization, and integration of assays.
离心微流控技术已经发展成为一项成熟的技术。几家主要的诊断公司要么已经有产品上市,要么正在评估离心微流控技术以进行产品开发。应用领域广泛,包括临床化学、免疫诊断和蛋白质分析、细胞处理、分子诊断,以及食品、水和土壤分析。然而,新的流体功能和应用正在以很高的速度扩展离心微流控的可能性。在这篇综述中,我们首先介绍了最新的离心微流控单元操作的全面概述。然后,我们引入了“过程链”一词来回顾这些单元操作如何可以组合在一起以实现实验室工作流程的自动化。这种基本功能的聚合能够在更高的集成度水平上实现高效的流体设计。此外,我们分析了新的突破性单元操作如何促进更复杂应用的集成。其中包括存储气动能量以实现复杂的开关序列或径向向内泵送液体,以及完全预存储和释放试剂。在这种情况下,离心微流控技术相对于其他微流控致动原理具有重大优势:离心微流控技术提供的无脉冲惯性液体推进允许实现无任何外部泵接口的封闭流体系统。处理的体积很容易从小到毫升级扩展。通过旋转可以调整体积力,因此,即使对于非常小的体积,离心重力场中也很容易克服表面力,从而能够有效地从通道、腔室或传感器矩阵中分离出纳升级别的体积,并去除任何干扰气泡。总之,离心微流控技术利用了一系列全面的流体单元操作,如液体输送、计量、混合和阀控。现有的单元操作涵盖了自动液体处理要求的整个范围,并能够实现高效的小型化、并行化和分析的集成。