Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.
Anal Chem. 2020 Aug 4;92(15):10540-10547. doi: 10.1021/acs.analchem.0c01366. Epub 2020 Jul 15.
Molecular recognition of proteins is critical for study and manipulation of protein-related biological processes. However, design and synthesis of abiotic receptors for precise recognition of proteins still remains a challenging task. Herein, we developed a universal sequential surface-imprinting strategy that integrated two different types of imprinting reactions to construct artificial protein receptors with high selectivity. Employing dopamine self-polymerization and boronate/diol complexation as the first-step and second-step imprinting reactions, respectively, we synthesized surface-imprinted magnetic nanocomposites against two different enzyme proteins: deoxyribonuclease I (DNase I) and apurinic/apyrimidinic endonuclease/redox effector factor 1 (APE1). The obtained nanocomposites both showed strong and specific binding toward their respective template proteins. Moreover, the bound enzymes could be totally recovered with high activity under mild buffer conditions. These antibody-like specific and reversible binding properties enabled effective purification and enrichment of the low-abundance target proteins from complex serum samples. Compared to existing one-pot or one-step imprinting methods, the proposed sequential surface-imprinting approach offers a more flexible combination of different functional monomers and greatly enhances the performance and biocompatibility of the imprinted materials. The generality and simplicity of the sequential imprinting strategy would make it an appealing and competitive method to prepare artificial protein receptors.
蛋白质的分子识别对于研究和操纵与蛋白质相关的生物过程至关重要。然而,设计和合成非生物受体以精确识别蛋白质仍然是一项具有挑战性的任务。在此,我们开发了一种通用的顺序表面印迹策略,该策略整合了两种不同类型的印迹反应,以构建具有高选择性的人工蛋白质受体。分别采用多巴胺自聚合和硼酸/二醇络合作为第一步和第二步印迹反应,我们合成了针对两种不同酶蛋白的表面印迹磁性纳米复合材料:脱氧核糖核酸酶 I(DNase I)和脱嘌呤/脱嘧啶内切酶/氧化还原效应因子 1(APE1)。所得纳米复合材料均对各自的模板蛋白表现出强烈的特异性结合。此外,在温和的缓冲条件下,可完全回收具有高活性的结合酶。这些类似抗体的特异性和可逆结合特性使从复杂的血清样本中有效纯化和富集低丰度靶蛋白成为可能。与现有的一锅法或一步法印迹方法相比,所提出的顺序表面印迹方法为不同功能单体的更灵活组合提供了可能,并且极大地提高了印迹材料的性能和生物相容性。顺序印迹策略的通用性和简单性使其成为制备人工蛋白质受体的一种有吸引力且具有竞争力的方法。