Nespolo Roberto F, Solano-Iguaran Jaiber J, Paleo-López Rocío, Quintero-Galvis Julian F, Cubillos Francisco A, Bozinovic Francisco
Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia Chile.
Center of Applied Ecology and Sustainability (CAPES) Facultad de Ciencias Biológicas Universidad Católica de Chile Santiago Chile.
Ecol Evol. 2020 Jun 2;10(12):5240-5250. doi: 10.1002/ece3.6208. eCollection 2020 Jun.
The capacity of some yeasts to extract energy from single sugars, generating CO and ethanol (=fermentation), even in the presence of oxygen, is known as the Crabtree effect. This phenomenon represents an important adaptation as it allowed the utilization of the ecological niche given by modern fruits, an abundant source of food that emerged in the terrestrial environment in the Cretaceous. However, identifying the evolutionary events that triggered fermentative capacity in Crabtree-positive species is challenging, as microorganisms do not leave fossil evidence. Thus, key innovations should be inferred based only on traits measured under culture conditions. Here, we reanalyzed data from a common garden experiment where several proxies of fermentative capacity were recorded in Crabtree-positive and Crabtree-negative species, representing yeast phylogenetic diversity. In particular, we applied the "lasso-OU" algorithm which detects points of adaptive shifts, using traits that are proxies of fermentative performance. We tested whether multiple events or a single event explains the actual fermentative capacity of yeasts. According to the lasso-OU procedure, evolutionary changes in the three proxies of fermentative capacity that we considered (i.e., glycerol production, ethanol yield, and respiratory quotient) are consistent with a single evolutionary episode (a whole-genomic duplication, WGD), instead of a series of small genomic rearrangements. Thus, the WGD appears as the key event behind the diversification of fermentative yeasts, which by increasing gene dosage, and maximized their capacity of energy extraction for exploiting the new ecological niche provided by single sugars.
一些酵母即使在有氧存在的情况下,也能够从单糖中提取能量,产生二氧化碳和乙醇(即发酵),这种能力被称为“克奈特效应”。这一现象代表了一种重要的适应性变化,因为它使得酵母能够利用现代水果所提供的生态位,现代水果是白垩纪时期出现在陆地环境中的丰富食物来源。然而,由于微生物不会留下化石证据,因此确定触发克奈特阳性物种发酵能力的进化事件具有挑战性。因此,关键的创新只能根据在培养条件下测量的特征来推断。在这里,我们重新分析了一项共同花园实验的数据,在该实验中,记录了代表酵母系统发育多样性的克奈特阳性和克奈特阴性物种的几种发酵能力指标。特别是,我们应用了“套索-奥恩斯坦-乌伦贝克”算法,该算法使用作为发酵性能指标的特征来检测适应性转变点。我们测试了多个事件还是单个事件能够解释酵母的实际发酵能力。根据套索-奥恩斯坦-乌伦贝克程序,我们所考虑的三种发酵能力指标(即甘油产量、乙醇产率和呼吸商)的进化变化与单个进化事件(一次全基因组复制,WGD)一致,而不是一系列小的基因组重排。因此,全基因组复制似乎是发酵酵母多样化背后的关键事件,它通过增加基因剂量,最大化了酵母从单糖中提取能量以利用新生态位的能力。