文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

饮食、栖息地和系统发育对野生非洲草原象和森林象粪便微生物群的影响。

Effects of diet, habitat, and phylogeny on the fecal microbiome of wild African savanna () and forest elephants ().

作者信息

Budd Kris, Gunn Joe C, Finch Tabitha, Klymus Katy, Sitati Noah, Eggert Lori S

机构信息

Division of Biological Sciences University of Missouri Columbia MO USA.

Vermont Genetics Network University of Vermont Burlington VT USA.

出版信息

Ecol Evol. 2020 May 18;10(12):5637-5650. doi: 10.1002/ece3.6305. eCollection 2020 Jun.


DOI:10.1002/ece3.6305
PMID:32607180
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7319146/
Abstract

The gut microbiome, or the community of microorganisms inhabiting the digestive tract, is often unique to its symbiont and, in many animal taxa, is highly influenced by host phylogeny and diet. In this study, we characterized the gut microbiome of the African savanna elephant () and the African forest elephant (), sister taxa separated by 2.6-5.6 million years of independent evolution. We examined the effect of host phylogeny on microbiome composition. Additionally, we examined the influence of habitat types (forest versus savanna) and diet types (crop-raiding versus noncrop-raiding) on the microbiome within . We found 58 bacterial orders, representing 16 phyla, across all African elephant samples. The most common phyla were Firmicutes, Proteobacteria, and Bacteroidetes. The microbiome of was dominated by Firmicutes, similar to other hindgut fermenters, while the microbiome of was dominated by Proteobacteria, similar to more frugivorous species. Alpha diversity did not differ across species, habitat type, or diet, but beta diversity indicated that microbial communities differed significantly among species, diet types, and habitat types. Based on predicted KEGG metabolic pathways, we also found significant differences between species, but not habitat or diet, in amino acid metabolism, energy metabolism, and metabolism of terpenoids and polyketides. Understanding the digestive capabilities of these elephant species could aid in their captive management and ultimately their conservation.

摘要

肠道微生物群,即栖息在消化道中的微生物群落,通常与其共生体独特,并且在许多动物类群中,受到宿主系统发育和饮食的高度影响。在本研究中,我们对非洲草原象()和非洲森林象()的肠道微生物群进行了特征描述,这两个姐妹类群经过260万至560万年的独立进化而分离。我们研究了宿主系统发育对微生物群组成的影响。此外,我们还研究了栖息地类型(森林与草原)和饮食类型(盗食作物与非盗食作物)对非洲象体内微生物群的影响。我们在所有非洲象样本中发现了代表16个门的58个细菌目。最常见的门是厚壁菌门、变形菌门和拟杆菌门。草原象的微生物群以厚壁菌门为主,类似于其他后肠发酵动物,而森林象的微生物群以变形菌门为主,类似于更多的食果物种。物种、栖息地类型或饮食之间的α多样性没有差异,但β多样性表明微生物群落在物种、饮食类型和栖息地类型之间存在显著差异。基于预测的KEGG代谢途径,我们还发现物种之间在氨基酸代谢、能量代谢以及萜类和聚酮类代谢方面存在显著差异,但栖息地或饮食之间没有差异。了解这些象种的消化能力有助于它们的圈养管理,并最终有助于它们的保护。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0698/7319146/c13ddf2be68f/ECE3-10-5637-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0698/7319146/3ca6a81426ae/ECE3-10-5637-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0698/7319146/d46bd9371732/ECE3-10-5637-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0698/7319146/1046b2a50fd2/ECE3-10-5637-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0698/7319146/c13ddf2be68f/ECE3-10-5637-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0698/7319146/3ca6a81426ae/ECE3-10-5637-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0698/7319146/d46bd9371732/ECE3-10-5637-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0698/7319146/1046b2a50fd2/ECE3-10-5637-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0698/7319146/c13ddf2be68f/ECE3-10-5637-g004.jpg

相似文献

[1]
Effects of diet, habitat, and phylogeny on the fecal microbiome of wild African savanna () and forest elephants ().

Ecol Evol. 2020-5-18

[2]
Conserved core microbiota in managed and free-ranging elephants.

Front Microbiol. 2023-10-4

[3]
Do topography and fruit presence influence occurrence and intensity of crop-raiding by forest elephants (Loxodonta africana cyclotis)?

PLoS One. 2019-3-22

[4]
Clinical health issues, reproductive hormones, and metabolic hormones associated with gut microbiome structure in African and Asian elephants.

Anim Microbiome. 2021-12-20

[5]
A metagenomic survey of the fecal microbiome of the African savanna elephant (Loxodonta africana).

Anim Genet. 2024-8

[6]
Development and characterization of microsatellite markers in the African forest elephant (Loxodonta cyclotis).

BMC Res Notes. 2016-7-26

[7]
Ixodid ticks (Acari: Ixodidae) collected from African savanna elephants (Loxodonta africana) and African forest elephants (Loxodonta cyclotis).

Onderstepoort J Vet Res. 2019-11-6

[8]
Qualitative comparison of the cranio-dental osteology of the extant elephants, Elephas Maximus (Asian elephant) and Loxodonta africana (African elephant).

Anat Rec (Hoboken). 2010-1

[9]
Comparative and functional analyses of fecal microbiome in Asian elephants.

Antonie Van Leeuwenhoek. 2022-9

[10]
African elephant genetics: enigmas and anomalies.

J Genet. 2019-9

引用本文的文献

[1]
Analysis on gut microbiota diversity of wild Asian elephants (Elephas maximus) from three regions of Yunnan Province.

Sci Rep. 2025-7-1

[2]
Comparative gut microbiome research through the lens of ecology: theoretical considerations and best practices.

Biol Rev Camb Philos Soc. 2025-4

[3]
Exploring the gut microbiota of healthy captive Asian elephants from various locations in Yunnan, China.

Front Microbiol. 2024-9-27

[4]
Short-read full-length 16S rRNA amplicon sequencing for characterisation of the respiratory bacteriome of captive and free-ranging African elephants (Loxodonta africana).

Sci Rep. 2024-6-26

[5]
Faecal bacterial communities differ amongst discrete foraging populations of dugongs along the east Australian coast.

FEMS Microbiol Ecol. 2024-5-14

[6]
Microbial community composition in the dung of five sympatric European herbivore species.

Ecol Evol. 2024-3-13

[7]
Characteristics of gut microbiota in captive Asian elephants (Elephas maximus) from infant to elderly.

Sci Rep. 2023-12-27

[8]
Conserved core microbiota in managed and free-ranging elephants.

Front Microbiol. 2023-10-4

[9]
Microbiome variations among age classes and diets of captive Asian elephants (Elephas maximus) in Thailand using full-length 16S rRNA nanopore sequencing.

Sci Rep. 2023-10-17

[10]
Fecal microbiota of the synanthropic golden jackal (Canis aureus).

Anim Microbiome. 2023-8-5

本文引用的文献

[1]
Covariation of diet and gut microbiome in African megafauna.

Proc Natl Acad Sci U S A. 2019-11-4

[2]
Laboratory mice born to wild mice have natural microbiota and model human immune responses.

Science. 2019-8-1

[3]
Effect of storage and DNA extraction method on 16S rRNA-profiled fecal microbiota in Japanese adults.

J Clin Biochem Nutr. 2019-3

[4]
Rare gut microbiota associated with breeding success, hormone metabolites and ovarian cycle phase in the critically endangered eastern black rhino.

Microbiome. 2019-2-15

[5]
African savanna elephants () as an example of a herbivore making movement choices based on nutritional needs.

PeerJ. 2019-2-1

[6]
Drivers of Microbiome Biodiversity: A Review of General Rules, Feces, and Ignorance.

mBio. 2018-7-31

[7]
CowPI: A Rumen Microbiome Focussed Version of the PICRUSt Functional Inference Software.

Front Microbiol. 2018-5-25

[8]
Comparison of gizzard and intestinal microbiota of wild neotropical birds.

PLoS One. 2018-3-26

[9]
Rapid environmental effects on gut nematode susceptibility in rewilded mice.

PLoS Biol. 2018-3-8

[10]
Rates of gut microbiome divergence in mammals.

Mol Ecol. 2018-1-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索