Suppr超能文献

基于四元数的空间坐标和方向框架对齐问题。

The quaternion-based spatial-coordinate and orientation-frame alignment problems.

作者信息

Hanson Andrew J

机构信息

Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, Indiana, USA.

出版信息

Acta Crystallogr A Found Adv. 2020 Jul 1;76(Pt 4):432-457. doi: 10.1107/S2053273320002648. Epub 2020 Jun 18.

Abstract

The general problem of finding a global rotation that transforms a given set of spatial coordinates and/or orientation frames (the test' data) into the best possible alignment with a corresponding set (the reference' data) is reviewed. For 3D point data, this `orthogonal Procrustes problem' is often phrased in terms of minimizing a root-mean-square deviation (RMSD) corresponding to a Euclidean distance measure relating the two sets of matched coordinates. This article focuses on quaternion eigensystem methods that have been exploited to solve this problem for at least five decades in several different bodies of scientific literature, where they were discovered independently. While numerical methods for the eigenvalue solutions dominate much of this literature, it has long been realized that the quaternion-based RMSD optimization problem can also be solved using exact algebraic expressions based on the form of the quartic equation solution published by Cardano in 1545; focusing on these exact solutions exposes the structure of the entire eigensystem for the traditional 3D spatial-alignment problem. The structure of the less-studied orientation-data context is then explored, investigating how quaternion methods can be extended to solve the corresponding 3D quaternion orientation-frame alignment (QFA) problem, noting the interesting equivalence of this problem to the rotation-averaging problem, which also has been the subject of independent literature threads. The article concludes with a brief discussion of the combined 3D translation-orientation data alignment problem. Appendices are devoted to a tutorial on quaternion frames, a related quaternion technique for extracting quaternions from rotation matrices and a review of quaternion rotation-averaging methods relevant to the orientation-frame alignment problem. The supporting information covers novel extensions of quaternion methods to the 4D Euclidean spatial-coordinate alignment and 4D orientation-frame alignment problems, some miscellaneous topics, and additional details of the quartic algebraic eigenvalue problem.

摘要

本文回顾了寻找全局旋转的一般问题,该旋转可将给定的一组空间坐标和/或方向框架(“测试”数据)转换为与相应集合(“参考”数据)的最佳对齐。对于三维点数据,这个“正交普罗克汝斯忒斯问题”通常表述为最小化对应于两组匹配坐标之间欧几里得距离度量的均方根偏差(RMSD)。本文重点关注四元数特征系统方法,在至少五十年的时间里,这些方法在几个不同的科学文献领域中被用于解决这个问题,它们是被独立发现的。虽然特征值解的数值方法在这些文献中占主导地位,但人们早就意识到基于四元数的RMSD优化问题也可以使用基于1545年卡尔达诺发表的四次方程解形式的精确代数表达式来解决;关注这些精确解揭示了传统三维空间对齐问题整个特征系统的结构。然后探讨了研究较少的方向数据背景的结构,研究了如何扩展四元数方法来解决相应的三维四元数方向框架对齐(QFA)问题,注意到这个问题与旋转平均问题有趣的等价性,旋转平均问题也是独立文献线索的主题。本文最后简要讨论了组合的三维平移 - 方向数据对齐问题。附录专门介绍了四元数框架教程、从旋转矩阵中提取四元数的相关四元数技术以及与方向框架对齐问题相关的四元数旋转平均方法综述。支持信息涵盖了四元数方法到四维欧几里得空间坐标对齐和四维方向框架对齐问题的新扩展、一些杂项主题以及四次代数特征值问题的更多细节。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8cb/7330932/4ebc4e7ca62b/a-76-00432-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验