Suppr超能文献

论空间位移平均值的计算

ON THE COMPUTATION OF THE AVERAGE OF SPATIAL DISPLACEMENTS.

作者信息

Ge Q J, Yu Zihan, Arbab Mona, Langer Mark

机构信息

Computational Design Kinematics Lab, Stony Brook University, SUNY, Stony Brook, New York, 11794-2300.

Radiation Oncology Department, Indiana University, Indianapolis, Indiana, 46202.

出版信息

Proc ASME Des Eng Tech Conf. 2022 Aug;7(46). doi: 10.1115/detc2022-90156. Epub 2022 Nov 11.

Abstract

Many applications in biomechanics and medical imaging call for the analysis of the kinematic errors in a group of patients statistically using the average displacement and the standard deviations from the average. This paper studies the problem of computing the average displacement from a set of given spatial displacements using three types of parametric representations: Euler angles and translation vectors, unit quaternions and translation vectors, and dual quaternions. It has been shown that the use of Euclidean norm in the space of unit quaternions reduces the problem to that of computing the average for each quaternion component separately and independently. While the resulting algorithm is simple, the change of the sign of a unit quaternion could lead to an incorrect result. A novel kinematic measure based on dual quaternions is introduced to capture the separation between two spatial displacement. This kinematic measure is then used to formulate a constrained least squares minimization problem. It has been shown that the problem decomposes into that of finding the optimal translation vector and the optimal unit quaternion. The former is simply the centroid of the set of given translation vectors and the latter can be obtained as the eigenvector corresponding to the least eigenvalue of a 4 × 4 positive definite symmetric matrix. It is found that the weight factor used in combining rotations and translations in the formulation does not play a role in the final outcome. Examples are provided to show the comparisons of these methods.

摘要

生物力学和医学成像中的许多应用都需要使用平均位移和相对于平均值的标准差,对一组患者的运动学误差进行统计分析。本文研究了使用三种参数表示形式从一组给定的空间位移计算平均位移的问题:欧拉角和平移向量、单位四元数和平移向量以及对偶四元数。研究表明,在单位四元数空间中使用欧几里得范数可将问题简化为分别独立计算每个四元数分量的平均值。虽然所得算法简单,但单位四元数符号的变化可能导致错误结果。引入了一种基于对偶四元数的新型运动学度量来捕捉两个空间位移之间的差异。然后使用这种运动学度量来制定一个约束最小二乘最小化问题。研究表明,该问题可分解为寻找最优平移向量和最优单位四元数的问题。前者简单地是给定平移向量集的质心,后者可作为对应于一个4×4正定对称矩阵最小特征值的特征向量获得。研究发现,在公式中用于组合旋转和平移的权重因子在最终结果中不起作用。提供了示例以展示这些方法的比较。

相似文献

1
ON THE COMPUTATION OF THE AVERAGE OF SPATIAL DISPLACEMENTS.论空间位移平均值的计算
Proc ASME Des Eng Tech Conf. 2022 Aug;7(46). doi: 10.1115/detc2022-90156. Epub 2022 Nov 11.
2
3
On the mean and variance of planar displacements.关于平面位移的均值和方差。
Int J Mech Robot Syst. 2023;5(4):308-325. doi: 10.1504/ijmrs.2023.137478. Epub 2024 Mar 19.
4
Constructing Kinematic Confidence Regions With Double Quaternions.用双四元数构建运动学置信区域
Proc MSR RomanSy 2024 (2024). 2024;159:215-230. doi: 10.1007/978-3-031-60618-2_18. Epub 2024 May 29.
5
On the Computation of the Average of Planar Displacements.关于平面位移平均值的计算
Proc 2022 USCToMM Symp Mech Syst Robot (2022). 2022;118:232-242. doi: 10.1007/978-3-030-99826-4_20. Epub 2022 Apr 1.
7
The quaternion-based spatial-coordinate and orientation-frame alignment problems.基于四元数的空间坐标和方向框架对齐问题。
Acta Crystallogr A Found Adv. 2020 Jul 1;76(Pt 4):432-457. doi: 10.1107/S2053273320002648. Epub 2020 Jun 18.
8
Molecular symmetry with quaternions.四元数的分子对称性。
Spectrochim Acta A Mol Biomol Spectrosc. 2001 Sep 1;57(10):1919-30. doi: 10.1016/s1386-1425(01)00477-2.
10
An Algorithm for the Factorization of Split Quaternion Polynomials.一种分裂四元数多项式因式分解的算法。
Adv Appl Clifford Algebr. 2021;31(3):29. doi: 10.1007/s00006-021-01133-8. Epub 2021 Apr 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验