Suppr超能文献

四元数作为确定人体运动角运动学的一种解决方案。

Quaternions as a solution to determining the angular kinematics of human movement.

作者信息

Challis John H

机构信息

Biomechanics Laboratory, Pennsylvania State University, University Park, PA 16802 USA.

出版信息

BMC Biomed Eng. 2020 Mar 23;2:5. doi: 10.1186/s42490-020-00039-z. eCollection 2020.

Abstract

The three-dimensional description of rigid body kinematics is a key step in many studies in biomechanics. There are several options for describing rigid body orientation including Cardan angles, Euler angles, and quaternions; the utility of quaternions will be reviewed and elaborated. The orientation of a rigid body or a joint between rigid bodies can be described by a quaternion which consists of four variables compared with Cardan or Euler angles (which require three variables). A quaternion,  = ( ,  ,  ,  ), can be considered a rotation (Ω = 2 cos( )), about an axis defined by a unit direction vector . The quaternion, compared with Cardan and Euler angles, does not suffer from singularities or Codman's paradox. Three-dimensional angular kinematics are defined on the surface of a unit hypersphere which means numerical procedures for orientation averaging and interpolation must take account of the shape of this surface rather than assuming that Euclidean geometry based procedures are appropriate. Numerical simulations demonstrate the utility of quaternions for averaging three-dimensional orientations. In addition the use of quaternions for the interpolation of three-dimensional orientations, and for determining three-dimensional orientation derivatives is reviewed. The unambiguous nature of defining rigid body orientation in three-dimensions using a quaternion, and its simple averaging and interpolation gives it great utility for the kinematic analysis of human movement.

摘要

刚体运动学的三维描述是生物力学许多研究中的关键步骤。描述刚体方位有多种选择,包括卡丹角、欧拉角和四元数;本文将对四元数的效用进行回顾和阐述。刚体或刚体之间关节的方位可以用四元数来描述,与卡丹角或欧拉角(需要三个变量)相比,四元数由四个变量组成。一个四元数  = ( ,  ,  ,  ),可以被认为是绕由单位方向向量 定义的轴的旋转(Ω = 2 cos( ))。与卡丹角和欧拉角相比,四元数不存在奇异性或科德曼悖论。三维角运动学定义在单位超球面上,这意味着方位平均和插值的数值方法必须考虑该表面的形状,而不是假设基于欧几里得几何的方法是合适的。数值模拟证明了四元数在平均三维方位方面的效用。此外,还回顾了四元数在三维方位插值以及确定三维方位导数方面的应用。使用四元数在三维中定义刚体方位的明确性质及其简单的平均和插值方法,使其在人体运动的运动学分析中具有很大的效用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9c2/7422562/dfc5b602610e/42490_2020_39_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验