Suppr超能文献

DeepTorrent:一种基于深度学习的方法,用于预测 DNA N4-甲基胞嘧啶位点。

DeepTorrent: a deep learning-based approach for predicting DNA N4-methylcytosine sites.

机构信息

College of Information Engineering, Northwest A&F University.

School of Science, Dalian Maritime University.

出版信息

Brief Bioinform. 2021 May 20;22(3). doi: 10.1093/bib/bbaa124.

Abstract

DNA N4-methylcytosine (4mC) is an important epigenetic modification that plays a vital role in regulating DNA replication and expression. However, it is challenging to detect 4mC sites through experimental methods, which are time-consuming and costly. Thus, computational tools that can identify 4mC sites would be very useful for understanding the mechanism of this important type of DNA modification. Several machine learning-based 4mC predictors have been proposed in the past 3 years, although their performance is unsatisfactory. Deep learning is a promising technique for the development of more accurate 4mC site predictions. In this work, we propose a deep learning-based approach, called DeepTorrent, for improved prediction of 4mC sites from DNA sequences. It combines four different feature encoding schemes to encode raw DNA sequences and employs multi-layer convolutional neural networks with an inception module integrated with bidirectional long short-term memory to effectively learn the higher-order feature representations. Dimension reduction and concatenated feature maps from the filters of different sizes are then applied to the inception module. In addition, an attention mechanism and transfer learning techniques are also employed to train the robust predictor. Extensive benchmarking experiments demonstrate that DeepTorrent significantly improves the performance of 4mC site prediction compared with several state-of-the-art methods.

摘要

DNA N4-甲基胞嘧啶(4mC)是一种重要的表观遗传修饰,在调节 DNA 复制和表达中起着至关重要的作用。然而,通过实验方法检测 4mC 位点既耗时又昂贵,因此,能够识别 4mC 位点的计算工具对于理解这种重要的 DNA 修饰机制将非常有用。在过去的 3 年中,已经提出了几种基于机器学习的 4mC 预测器,尽管它们的性能并不令人满意。深度学习是开发更准确的 4mC 位点预测器的有前途的技术。在这项工作中,我们提出了一种基于深度学习的方法,称为 DeepTorrent,用于从 DNA 序列中改进 4mC 位点的预测。它结合了四种不同的特征编码方案来对原始 DNA 序列进行编码,并采用带有 inception 模块的多层卷积神经网络,该模块集成了双向长短期记忆,可有效地学习高阶特征表示。然后,将来自不同大小滤波器的降维和串联特征图应用于 inception 模块。此外,还采用了注意力机制和迁移学习技术来训练稳健的预测器。广泛的基准实验表明,与几种最先进的方法相比,DeepTorrent 显著提高了 4mC 位点预测的性能。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验