Suppr超能文献

开发一种基于多层深度学习的预测模型以识别DNA N4-甲基胞嘧啶修饰。

Developing a Multi-Layer Deep Learning Based Predictive Model to Identify DNA N4-Methylcytosine Modifications.

作者信息

Zeng Rao, Liao Minghong

机构信息

Department of Software Engineering, School of Informatics, Xiamen University, Xiamen, China.

出版信息

Front Bioeng Biotechnol. 2020 Apr 21;8:274. doi: 10.3389/fbioe.2020.00274. eCollection 2020.

Abstract

DNA N4-methylcytosine modification (4mC) plays an essential role in a variety of biological processes. Therefore, accurate identification the 4mC distribution in genome-scale is important for systematically understanding its biological functions. In this study, we present Deep4mcPred, a multi-layer deep learning based predictive model to identify DNA N4-methylcytosine modifications. In this predictor, we for the first time integrate residual network and recurrent neural network to build a multi-layer deep learning predictive system. As compared to existing predictors using traditional machine learning, our proposed method has two advantages. First, our deep learning framework does not need to specify the features when training the predictive model. It can automatically learn the high-level features and capture the characteristic specificity of 4mC sites, benefiting to distinguish true 4mC sites from non-4mC sites. On the other hand, our deep learning method outperforms the traditional machine learning predictors in performance by benchmarking comparison, demonstrating that the proposed Deep4mcPred is more effective in the DNA 4mC site prediction. Moreover, via experimental comparison, we found that attention mechanism introduced into the deep learning framework is useful to capture the critical features. Additionally, we develop a webserver implementing the proposed method for the academic use of research community, which is now available at http://server.malab.cn/Deep4mcPred.

摘要

DNA N4-甲基胞嘧啶修饰(4mC)在多种生物学过程中发挥着重要作用。因此,在全基因组范围内准确识别4mC的分布对于系统理解其生物学功能至关重要。在本研究中,我们提出了Deep4mcPred,这是一种基于多层深度学习的预测模型,用于识别DNA N4-甲基胞嘧啶修饰。在这个预测器中,我们首次将残差网络和循环神经网络集成起来,构建了一个多层深度学习预测系统。与使用传统机器学习的现有预测器相比,我们提出的方法有两个优点。首先,我们的深度学习框架在训练预测模型时不需要指定特征。它可以自动学习高级特征并捕捉4mC位点的特征特异性,有助于区分真正的4mC位点和非4mC位点。另一方面,通过基准比较,我们的深度学习方法在性能上优于传统机器学习预测器,这表明所提出的Deep4mcPred在DNA 4mC位点预测中更有效。此外,通过实验比较,我们发现引入深度学习框架中的注意力机制有助于捕捉关键特征。此外,我们开发了一个网络服务器来实现所提出的方法,供研究社区学术使用,该服务器现在可在http://server.malab.cn/Deep4mcPred上获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验