College of Information Engineering, Northwest A&F University, Yangling 712100, China.
South Australian immunoGENomics Cancer Institute (SAiGENCI), The University of Adelaide, Adelaide, SA 5005, Australia.
Bioinformatics. 2024 Aug 2;40(8). doi: 10.1093/bioinformatics/btae504.
The asymmetrical distribution of expressed mRNAs tightly controls the precise synthesis of proteins within human cells. This non-uniform distribution, a cornerstone of developmental biology, plays a pivotal role in numerous cellular processes. To advance our comprehension of gene regulatory networks, it is essential to develop computational tools for accurately identifying the subcellular localizations of mRNAs. However, considering multi-localization phenomena remains limited in existing approaches, with none considering the influence of RNA's secondary structure.
In this study, we propose Allocator, a multi-view parallel deep learning framework that seamlessly integrates the RNA sequence-level and structure-level information, enhancing the prediction of mRNA multi-localization. The Allocator models equip four efficient feature extractors, each designed to handle different inputs. Two are tailored for sequence-based inputs, incorporating multilayer perceptron and multi-head self-attention mechanisms. The other two are specialized in processing structure-based inputs, employing graph neural networks. Benchmarking results underscore Allocator's superiority over state-of-the-art methods, showcasing its strength in revealing intricate localization associations.
The webserver of Allocator is available at http://Allocator.unimelb-biotools.cloud.edu.au; the source code and datasets are available on GitHub (https://github.com/lifuyi774/Allocator) and Zenodo (https://doi.org/10.5281/zenodo.13235798).
表达的 mRNA 的非对称分布严格控制了人类细胞内蛋白质的精确合成。这种非均匀分布是发育生物学的基石,在许多细胞过程中起着关键作用。为了深入了解基因调控网络,开发用于准确识别 mRNA 亚细胞定位的计算工具至关重要。然而,考虑到多定位现象在现有方法中仍然受到限制,没有一种方法考虑到 RNA 二级结构的影响。
在这项研究中,我们提出了 Allocator,这是一个多视图并行深度学习框架,它无缝地整合了 RNA 序列和结构信息,增强了对 mRNA 多定位的预测。Allocator 模型配备了四个高效的特征提取器,每个提取器都设计用于处理不同的输入。其中两个是专门针对基于序列的输入设计的,包括多层感知机和多头自注意力机制。另外两个是专门用于处理基于结构的输入的,采用图神经网络。基准测试结果突显了 Allocator 优于最先进方法的优势,展示了它在揭示复杂定位关联方面的强大功能。
Allocator 的网络服务器可在 http://Allocator.unimelb-biotools.cloud.edu.au 访问;源代码和数据集可在 GitHub(https://github.com/lifuyi774/Allocator)和 Zenodo(https://doi.org/10.5281/zenodo.13235798)上获得。