Becerril-Romero Ignacio, Sylla Diouldé, Placidi Marcel, Sánchez Yudania, Andrade-Arvizu Jacob, Izquierdo-Roca Victor, Guc Maxim, Pérez-Rodríguez Alejandro, Grini Sigbjørn, Vines Lasse, Pusay Benjamín, Almache Rosa, Puigdollers Joaquim, Pistor Paul, Saucedo Edgardo, Espíndola-Rodríguez Moisés
IREC-Catalonia Institute for Energy Research, 08930 Sant Adrià de Besòs, Spain.
Departament d'Enginyeria Electrònica i Biomèdica, IN2UB, Universitat de Barcelona, 08028 Barcelona, Spain.
ACS Appl Mater Interfaces. 2020 Jul 29;12(30):33656-33669. doi: 10.1021/acsami.0c06992. Epub 2020 Jul 15.
Fabrication on transparent soda-lime glass/fluorine-doped tin oxide (FTO) substrates opens the way to advanced applications for kesterite solar cells such as semitransparent, bifacial, and tandem devices, which are key to the future of the PV market. However, the complex behavior of the p-kesterite/n-FTO back-interface potentially limits the power conversion efficiency of such devices. Overcoming this issue requires careful interface engineering. This work empirically explores the use of transition-metal oxides (TMOs) and Mo-based nanolayers to improve the back-interface of CuZnSnSe, CuZnSnS, and CuZnSn(S,Se) solar cells fabricated on transparent glass/FTO substrates. Although the use of TMOs alone is found to be highly detrimental to the devices inducing complex current-blocking behaviors, the use of Mo:Na nanolayers and their combination with n-type TMOs TiO and VO are shown to be a very promising strategy to improve the limited performance of kesterite devices fabricated on transparent substrates. The optoelectronic, morphological, structural, and in-depth compositional characterization performed on the devices suggests that the improvements observed are related to a combination of shunt insulation and recombination reduction. This way, record efficiencies of 6.1, 6.2, and 7.9% are obtained for CuZnSnSe, CuZnSnS, and CuZnSn(S,Se) devices, respectively, giving proof of the potential of TMOs for the development of kesterite solar cells on transparent substrates.
在透明钠钙玻璃/氟掺杂氧化锡(FTO)衬底上进行制备,为硫系太阳能电池的先进应用开辟了道路,如半透明、双面和串联器件,这些都是光伏市场未来的关键。然而,p型硫系/n型FTO背界面的复杂行为可能会限制此类器件的功率转换效率。克服这个问题需要精心的界面工程。这项工作通过实验探索了使用过渡金属氧化物(TMO)和基于Mo的纳米层来改善在透明玻璃/FTO衬底上制备的CuZnSnSe、CuZnSnS和CuZnSn(S,Se)太阳能电池的背界面。尽管发现单独使用TMO对器件非常不利,会引发复杂的电流阻断行为,但使用Mo:Na纳米层及其与n型TMO TiO和VO的组合被证明是一种非常有前景的策略,可以改善在透明衬底上制备的硫系器件有限的性能。对器件进行的光电、形态、结构和深度成分表征表明,观察到的性能提升与分流绝缘和复合减少的综合作用有关。通过这种方式,CuZnSnSe、CuZnSnS和CuZnSn(S,Se)器件分别获得了6.1%、6.2%和7.9%的创纪录效率,证明了TMO在开发透明衬底上的硫系太阳能电池方面的潜力。