Suppr超能文献

通过机器学习对氢在多个铜表面的解离吸附动力学进行统一且可转移的描述。

Unified and transferable description of dynamics of H dissociative adsorption on multiple copper surfaces via machine learning.

作者信息

Zhu Lingjun, Zhang Yaolong, Zhang Liang, Zhou Xueyao, Jiang Bin

机构信息

Hefei National Laboratory for Physical Science at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.

出版信息

Phys Chem Chem Phys. 2020 Jul 1;22(25):13958-13964. doi: 10.1039/d0cp02291h.

Abstract

Dynamics of gas-surface reactions is of fundamental importance to various interfacial problems. Accurate modeling of gas-surface reaction dynamics requires a globally accurate reactive potential energy surface (PES), typically specialized for one molecule-surface system with no transferability even from one to another surface. As a proof of concept, we report a novel machine learned PES for H2 reactive scattering from multiple low-index copper surfaces. Trained with limited data, this PES enables a uniformly and chemically accurate description of dissociative adsorption of H2/D2 on Cu(111)/Cu(100)/Cu(110) and offers quantitative insights to the remarkable surface temperature effect. More impressively, this PES is also transferable to describe the dynamics of H2 dissociation on Cu(211) without learning any data on that stepped surface, which can be further improved when adding only a small amount of points. Our work opens a new avenue for studying the dynamics of the structure or step density-sensitive gas-surface reactions relevant to heterogeneous catalysis.

摘要

气体-表面反应动力学对于各种界面问题至关重要。准确模拟气体-表面反应动力学需要一个全局精确的反应势能面(PES),通常专门针对一个分子-表面系统,甚至从一个表面到另一个表面都没有可转移性。作为概念验证,我们报告了一种用于H₂从多个低指数铜表面进行反应性散射的新型机器学习PES。通过有限的数据进行训练,该PES能够对H₂/D₂在Cu(111)/Cu(100)/Cu(110)上的解离吸附进行统一且化学精确的描述,并为显著的表面温度效应提供定量见解。更令人印象深刻的是,该PES还可转移用于描述H₂在Cu(211)上的解离动力学,而无需在该阶梯表面上学习任何数据,在仅添加少量点时可进一步改进。我们的工作为研究与多相催化相关的结构或台阶密度敏感的气体-表面反应动力学开辟了一条新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验