Suppr超能文献

基于抗体环设计的环肽增加了对流感变体的结合广谱性。

Computationally Designed Cyclic Peptides Derived from an Antibody Loop Increase Breadth of Binding for Influenza Variants.

机构信息

Chemical & Physical Biology Program, Vanderbilt University, Nashville, TN 37235, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA.

Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA.

出版信息

Structure. 2020 Oct 6;28(10):1114-1123.e4. doi: 10.1016/j.str.2020.04.005. Epub 2020 Jun 30.

Abstract

The influenza hemagglutinin (HA) glycoprotein is the target of many broadly neutralizing antibodies. However, influenza viruses can rapidly escape antibody recognition by mutation of hypervariable regions of HA that overlap with the binding epitope. We hypothesized that by designing peptides to mimic antibody loops, we could enhance breadth of binding to HA antigenic variants by reducing contact with hypervariable residues on HA that mediate escape. We designed cyclic peptides that mimic the heavy-chain complementarity-determining region 3 (CDRH3) of anti-influenza broadly neutralizing antibody C05 and show that these peptides bound to HA molecules with <100 nM affinity, comparable with that of the full-length parental C05 IgG. In addition, these peptides exhibited increased breadth of recognition to influenza H4 and H7 subtypes by eliminating clashes between the hypervariable antigenic regions and the antibody CDRH1 loop. This approach can be used to generate antibody-derived peptides against a wide variety of targets.

摘要

流感血凝素 (HA) 糖蛋白是许多广谱中和抗体的靶标。然而,流感病毒可以通过突变 HA 的超变区来快速逃避抗体识别,这些超变区与结合表位重叠。我们假设通过设计模拟抗体环的肽,可以通过减少与介导逃逸的 HA 上的超变残基的接触,来增强对 HA 抗原变异体的结合广度。我们设计了模拟抗流感广谱中和抗体 C05 的重链互补决定区 3 (CDRH3) 的环状肽,结果表明这些肽与 HA 分子的亲和力低于 100 nM,与全长亲本 C05 IgG 相当。此外,这些肽通过消除抗体 CDRH1 环与高变抗原区域之间的冲突,增加了对流感 H4 和 H7 亚型的识别广度。这种方法可用于针对多种靶标生成抗体衍生的肽。

相似文献

9
Humanized antibody neutralizing 2009 pandemic H1N1 virus.人源化抗体中和2009年甲型H1N1流感大流行病毒。
Biotechnol J. 2014 Dec;9(12):1594-603. doi: 10.1002/biot.201400083. Epub 2014 Aug 8.

引用本文的文献

2
NADPH Oxidases: From Molecular Mechanisms to Current Inhibitors.NADPH 氧化酶:从分子机制到当前抑制剂。
J Med Chem. 2023 Sep 14;66(17):11632-11655. doi: 10.1021/acs.jmedchem.3c00770. Epub 2023 Aug 31.
6
Antibodies to combat viral infections: development strategies and progress.针对病毒感染的抗体:开发策略与进展。
Nat Rev Drug Discov. 2022 Sep;21(9):676-696. doi: 10.1038/s41573-022-00495-3. Epub 2022 Jun 20.
8
Cyclisation strategies for stabilising peptides with irregular conformations.用于稳定具有不规则构象肽段的环化策略。
RSC Med Chem. 2021 Apr 28;12(6):887-901. doi: 10.1039/d1md00098e. eCollection 2021 Jun 23.
10
Modeling Immunity with Rosetta: Methods for Antibody and Antigen Design.利用 Rosetta 进行免疫建模:抗体和抗原设计方法。
Biochemistry. 2021 Mar 23;60(11):825-846. doi: 10.1021/acs.biochem.0c00912. Epub 2021 Mar 11.

本文引用的文献

6
Next generation antibody drugs: pursuit of the 'high-hanging fruit'.下一代抗体药物:追求“高挂的果实”。
Nat Rev Drug Discov. 2018 Mar;17(3):197-223. doi: 10.1038/nrd.2017.227. Epub 2017 Dec 1.
7
Potent peptidic fusion inhibitors of influenza virus.强效流感病毒肽类融合抑制剂。
Science. 2017 Oct 27;358(6362):496-502. doi: 10.1126/science.aan0516. Epub 2017 Sep 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验