Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, 85748 Garching bei München, Germany.
ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3., Szeged H-6728, Hungary.
Rev Sci Instrum. 2020 Jun 1;91(6):063303. doi: 10.1063/5.0008512.
The development from single shot basic laser plasma interaction research toward experiments in which repetition rated laser-driven ion sources can be applied requires technological improvements. For example, in the case of radio-biological experiments, irradiation duration and reproducible controlled conditions are important for performing studies with a large number of samples. We present important technological advancements of recent years at the ATLAS 300 laser in Garching near Munich since our last radiation biology experiment. Improvements range from target positioning over proton transport and diagnostics to specimen handling. Exemplarily, we show the current capabilities by performing an application oriented experiment employing the zebrafish embryo model as a living vertebrate organism for laser-driven proton irradiation. The size, intensity, and energy of the laser-driven proton bunches resulted in evaluable partial body changes in the small (<1 mm) embryos, confirming the feasibility of the experimental system. The outcomes of this first study show both the appropriateness of the current capabilities and the required improvements of our laser-driven proton source for in vivo biological experiments, in particular the need for accurate, spatially resolved single bunch dosimetry and image guidance.
从单次基本激光等离子体相互作用研究向可应用重复率激光驱动离子源的实验发展需要技术改进。例如,在放射生物学实验的情况下,辐照持续时间和可重复的受控条件对于使用大量样本进行研究很重要。自我们上次进行放射生物学实验以来,我们在慕尼黑附近的加兴 ATLAS 300 激光上取得了重要的技术进展。改进范围从靶定位、质子传输和诊断到标本处理。作为示例,我们通过使用斑马鱼胚胎模型作为活体脊椎动物生物体进行面向应用的实验,展示了当前的能力,该实验采用激光驱动质子辐照。激光驱动质子束的大小、强度和能量导致小(<1 毫米)胚胎出现可评估的部分身体变化,证实了实验系统的可行性。这项初步研究的结果表明,当前的能力以及我们的激光驱动质子源用于体内生物学实验所需的改进是合适的,特别是需要准确的、空间分辨的单束剂量测定和图像引导。