Boonman Coline C F, Benítez-López Ana, Schipper Aafke M, Thuiller Wilfried, Anand Madhur, Cerabolini Bruno E L, Cornelissen Johannes H C, Gonzalez-Melo Andres, Hattingh Wesley N, Higuchi Pedro, Laughlin Daniel C, Onipchenko Vladimir G, Peñuelas Josep, Poorter Lourens, Soudzilovskaia Nadejda A, Huijbregts Mark A J, Santini Luca
Department of Environmental Science Institute for Water and Wetland Research Radboud University Nijmegen the Netherlands.
Integrative Ecology Group Estación Biológica de Doñana (EBD-CSIC) Sevilla Spain.
Glob Ecol Biogeogr. 2020 Jun;29(6):1034-1051. doi: 10.1111/geb.13086. Epub 2020 Mar 20.
Predictions of plant traits over space and time are increasingly used to improve our understanding of plant community responses to global environmental change. A necessary step forward is to assess the reliability of global trait predictions. In this study, we predict community mean plant traits at the global scale and present a systematic evaluation of their reliability in terms of the accuracy of the models, ecological realism and various sources of uncertainty.
Global.
Present.
Vascular plants.
We predicted global distributions of community mean specific leaf area, leaf nitrogen concentration, plant height and wood density with an ensemble modelling approach based on georeferenced, locally measured trait data representative of the plant community. We assessed the predictive performance of the models, the plausibility of predicted trait combinations, the influence of data quality, and the uncertainty across geographical space attributed to spatial extrapolation and diverging model predictions.
Ensemble predictions of community mean plant height, specific leaf area and wood density resulted in ecologically plausible trait-environment relationships and trait-trait combinations. Leaf nitrogen concentration, however, could not be predicted reliably. The ensemble approach was better at predicting community trait means than any of the individual modelling techniques, which varied greatly in predictive performance and led to divergent predictions, mostly in African deserts and the Arctic, where predictions were also extrapolated. High data quality (i.e., including intraspecific variability and a representative species sample) increased model performance by 28%.
Plant community traits can be predicted reliably at the global scale when using an ensemble approach and high-quality data for traits that mostly respond to large-scale environmental factors. We recommend applying ensemble forecasting to account for model uncertainty, using representative trait data, and more routinely assessing the reliability of trait predictions.
对植物性状在空间和时间上的预测越来越多地用于增进我们对植物群落对全球环境变化响应的理解。向前迈出的必要一步是评估全球性状预测的可靠性。在本研究中,我们在全球尺度上预测群落平均植物性状,并从模型准确性、生态现实性和各种不确定性来源方面对其可靠性进行系统评估。
全球。
当前。
维管植物。
我们基于代表植物群落的地理参考的、当地测量的性状数据,采用集合建模方法预测群落平均比叶面积、叶氮浓度、株高和木材密度的全球分布。我们评估了模型的预测性能、预测性状组合的合理性、数据质量的影响以及归因于空间外推和不同模型预测的地理空间不确定性。
群落平均株高、比叶面积和木材密度的集合预测产生了生态上合理的性状 - 环境关系和性状 - 性状组合。然而,叶氮浓度无法可靠预测。集合方法在预测群落性状均值方面比任何单个建模技术都更好,单个建模技术的预测性能差异很大,导致预测结果不同,主要在非洲沙漠和北极地区,这些地区的预测也是外推的。高数据质量(即包括种内变异性和代表性物种样本)使模型性能提高了28%。
当使用集合方法和高质量数据来预测主要响应大规模环境因素的性状时,植物群落性状可以在全球尺度上可靠预测。我们建议应用集合预测来考虑模型不确定性,使用代表性性状数据,并更常规地评估性状预测的可靠性。