Suppr超能文献

超声成像中抑制光栅旁瓣的填隙方法:深度学习方法的实验研究

Gap-filling method for suppressing grating lobes in ultrasound imaging: Experimental study with deep-learning approach.

作者信息

Kumar Viksit, Lee Po-Yang, Kim Bae-Hyung, Fatemi Mostafa, Alizad Azra

机构信息

Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.

Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan.

出版信息

IEEE Access. 2020;8:76276-76286. doi: 10.1109/access.2020.2989337. Epub 2020 Apr 21.

Abstract

Sparse arrays reduce the number of active channels that effectively increases the inter-element spacing. Large inter-element spacing results in grating lobe artifacts degrading the ultrasound image quality and reducing the contrast-to-noise ratio. A deep learning-based custom algorithm is proposed to estimate inactive channel data in periodic sparse arrays. The algorithm uses data from multiple active channels to estimate inactive channels. The estimated inactive channel data effectively reduces the inter-element spacing for beamforming, thus suppressing the grating lobes. Estimated inactive element channel data was combined with active element channel data resulting in a pseudo fully sampled array. The channel data was beamformed using a simple delay-and-sum method and compared with the sparse array and fully sampled array. The performance of the algorithm was validated using a wire target in a water tank, multi-purpose tissue-mimicking phantom, and carotid data. Grating lobes suppression up to 15.25 dB was observed with an increase in contrast-to-noise (CNR) for the pseudo fully sampled array. Hypoechoic regions showed more improvement in CNR than hyperechoic regions. Root-mean-square error for unwrapped phase between fully sampled array and the pseudo fully sampled array was low, making the estimated data suitable for Doppler and elastography applications. Speckle pattern was also preserved; thus, the estimated data can also be used for quantitative ultrasound applications. The algorithm can improve the quality of sparse array images and has applications in small scale ultrasound devices and 2D arrays.

摘要

稀疏阵列减少了有效增加阵元间距的有源通道数量。大阵元间距会导致旁瓣伪像,降低超声图像质量并减小对比度噪声比。提出了一种基于深度学习的定制算法来估计周期性稀疏阵列中的非有源通道数据。该算法利用多个有源通道的数据来估计非有源通道。估计出的非有源通道数据有效地减小了用于波束形成的阵元间距,从而抑制了旁瓣。将估计出的非有源阵元通道数据与有源阵元通道数据相结合,得到一个伪全采样阵列。使用简单的延迟求和方法对通道数据进行波束形成,并与稀疏阵列和全采样阵列进行比较。使用水箱中的线靶、多用途组织模拟体模和颈动脉数据验证了该算法的性能。对于伪全采样阵列,观察到旁瓣抑制高达15.25 dB,同时对比度噪声比(CNR)增加。低回声区域的CNR改善比高回声区域更多。全采样阵列和伪全采样阵列之间展开相位的均方根误差较低,使得估计数据适用于多普勒和弹性成像应用。散斑图案也得以保留;因此,估计数据也可用于定量超声应用。该算法可以提高稀疏阵列图像的质量,并且在小型超声设备和二维阵列中有应用。

相似文献

1
Gap-filling method for suppressing grating lobes in ultrasound imaging: Experimental study with deep-learning approach.
IEEE Access. 2020;8:76276-76286. doi: 10.1109/access.2020.2989337. Epub 2020 Apr 21.
3
Grating lobe mitigation on large-pitch arrays using null subtraction imaging.
Ultrasonics. 2024 May;140:107302. doi: 10.1016/j.ultras.2024.107302. Epub 2024 Mar 24.
4
Branched Convolutional Neural Networks for Receiver Channel Recovery in High-Frame-Rate Sparse-Array Ultrasound Imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2024 May;71(5):558-571. doi: 10.1109/TUFFC.2024.3383660. Epub 2024 May 10.
5
Sparse Rectangular and Spiral Array Designs for 3D Medical Ultrasound Imaging.
Sensors (Basel). 2019 Dec 27;20(1):173. doi: 10.3390/s20010173.
6
Deep learning assisted sparse array ultrasound imaging.
PLoS One. 2023 Oct 30;18(10):e0293468. doi: 10.1371/journal.pone.0293468. eCollection 2023.
7
Low Discrepancy Sparse Phased Array Antennas.
Sensors (Basel). 2021 Nov 24;21(23):7816. doi: 10.3390/s21237816.
8
Experimental verification of pulse-probing technique for improving phase coherence grating lobe suppression.
IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Jul;60(7):1324-32. doi: 10.1109/TUFFC.2013.2706.
9
Minimizing Image Quality Loss After Channel Count Reduction for Plane Wave Ultrasound via Deep Learning Inference.
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Oct;69(10):2849-2861. doi: 10.1109/TUFFC.2022.3192854. Epub 2022 Sep 27.
10
Amplitude modulated chirp excitation to reduce grating lobes and maintain ultrasound intensity at the focus of an array.
Ultrasonics. 2013 Sep;53(7):1293-303. doi: 10.1016/j.ultras.2013.03.014. Epub 2013 Apr 16.

引用本文的文献

1
A Deep Learning Approach for Beamforming and Contrast Enhancement of Ultrasound Images in Monostatic Synthetic Aperture Imaging: A Proof-of-Concept.
IEEE Open J Eng Med Biol. 2024 May 15;5:376-382. doi: 10.1109/OJEMB.2024.3401098. eCollection 2024.
3
Deep learning assisted sparse array ultrasound imaging.
PLoS One. 2023 Oct 30;18(10):e0293468. doi: 10.1371/journal.pone.0293468. eCollection 2023.

本文引用的文献

3
Correlation of ultrasound bladder vibrometry assessment of bladder compliance with urodynamic study results.
PLoS One. 2017 Jun 16;12(6):e0179598. doi: 10.1371/journal.pone.0179598. eCollection 2017.
4
Diagnostic features of quantitative comb-push shear elastography for breast lesion differentiation.
PLoS One. 2017 Mar 3;12(3):e0172801. doi: 10.1371/journal.pone.0172801. eCollection 2017.
5
2-D Ultrasound Sparse Arrays Multidepth Radiation Optimization Using Simulated Annealing and Spiral-Array Inspired Energy Functions.
IEEE Trans Ultrason Ferroelectr Freq Control. 2016 Dec;63(12):2138-2149. doi: 10.1109/TUFFC.2016.2602242.
6
Beyond Cervical Length: A Pilot Study of Ultrasonic Attenuation for Early Detection of Preterm Birth Risk.
Ultrasound Med Biol. 2015 Nov;41(11):3023-9. doi: 10.1016/j.ultrasmedbio.2015.06.014. Epub 2015 Aug 8.
7
Development of an ultrasonic method to detect cervical remodeling in vivo in full-term pregnant women.
Ultrasound Med Biol. 2015 Sep;41(9):2533-9. doi: 10.1016/j.ultrasmedbio.2015.04.022. Epub 2015 May 23.
8
Design of optimal 2-D nongrid sparse arrays for medical ultrasound.
IEEE Trans Biomed Eng. 2013 Nov;60(11):3093-102. doi: 10.1109/TBME.2013.2267742. Epub 2013 Jun 11.
9
Optimizing circular ring arrays for forward-looking IVUS imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2011 Dec;58(12):2596-607. doi: 10.1109/TUFFC.2011.2123.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验