Suppr超能文献

用于 3D 医学超声成像的稀疏矩形和螺旋阵列设计。

Sparse Rectangular and Spiral Array Designs for 3D Medical Ultrasound Imaging.

机构信息

Department of Electronic Engineering, Sogang University, Seoul 04107, Korea.

出版信息

Sensors (Basel). 2019 Dec 27;20(1):173. doi: 10.3390/s20010173.

Abstract

In three-dimensional (3D) medical ultrasound imaging with two-dimensional (2D) arrays, sparse 2D arrays have been studied to reduce the number of active channels. Among them, sparse 2D arrays with regular or uniform arrangements of elements have advantages of low side lobe energy and uniform field responses over the entire field of view. This paper presents two uniform sparse array models: sparse rectangular arrays (SRAs) on a rectangular grid and sparse spiral arrays (SSAs) on a sunflower grid. Both arrays can be easily implemented on the commercially available or the custom-made arrays. To suppress the overall grating lobe levels, the transmit (Tx) and receive (Rx) array pairs of both the array models are designed not to have grating lobes at the same locations in the Tx/Rx beam patterns, for which the theoretical design rules are also proposed. Computer simulation results indicate that the proposed array pairs for both the SRAs and the SSAs achieve peak grating lobe levels below -40 dB using about a quarter of the number of elements in the dense rectangular array while maintaining similar beam widths to that of the dense array pair.

摘要

在二维(2D)阵列的三维(3D)医学超声成象中,已经研究了稀疏 2D 阵列以减少活动通道的数量。其中,具有规则或均匀元件排列的稀疏 2D 阵列在整个视场中具有低旁瓣能量和均匀场响应的优点。本文提出了两种均匀稀疏阵列模型:矩形网格上的稀疏矩形阵列(SRA)和向日葵网格上的稀疏螺旋阵列(SSA)。这两种阵列都可以很容易地在市售或定制的阵列上实现。为了抑制整体栅瓣电平,设计了这两种阵列模型的发射(Tx)和接收(Rx)阵列对,以使 Tx/Rx 波束图案中的同一位置没有栅瓣,为此还提出了理论设计规则。计算机模拟结果表明,所提出的 SRA 和 SSA 的阵列对使用密集矩形阵列的四分之一数量的元件实现了低于-40dB 的峰值栅瓣电平,同时保持与密集阵列对相似的波束宽度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c5e/6982845/1fc9a44b3748/sensors-20-00173-g001.jpg

相似文献

1
Sparse Rectangular and Spiral Array Designs for 3D Medical Ultrasound Imaging.
Sensors (Basel). 2019 Dec 27;20(1):173. doi: 10.3390/s20010173.
2
Application of different spatial sampling patterns for sparse array transducer design.
Ultrasonics. 2000 Jul;37(10):667-71. doi: 10.1016/s0041-624x(00)00013-5.
3
Low Discrepancy Sparse Phased Array Antennas.
Sensors (Basel). 2021 Nov 24;21(23):7816. doi: 10.3390/s21237816.
4
Wideband 2-D sparse array optimization combined with multiline reception for real-time 3-D medical ultrasound.
Ultrasonics. 2021 Mar;111:106318. doi: 10.1016/j.ultras.2020.106318. Epub 2020 Dec 1.
5
Design and Evaluation of a Weighted Periodic Sparse Array for Low-Complexity 1-D Phased Array Ultrasound Imaging Systems.
IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Oct;71(10):1255-1268. doi: 10.1109/TUFFC.2024.3460688. Epub 2024 Oct 10.
6
Density-tapered spiral arrays for ultrasound 3-D imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2015 Aug;62(8):1580-8. doi: 10.1109/TUFFC.2015.007035.
7
Ultrasound therapy transducers with space-filling non-periodic arrays.
IEEE Trans Ultrason Ferroelectr Freq Control. 2011 May;58(5):944-54. doi: 10.1109/TUFFC.2011.1895.
8
Amplitude modulated chirp excitation to reduce grating lobes and maintain ultrasound intensity at the focus of an array.
Ultrasonics. 2013 Sep;53(7):1293-303. doi: 10.1016/j.ultras.2013.03.014. Epub 2013 Apr 16.
9
A Study on Capacitive Micromachined Ultrasonic Transducer Periodic Sparse Array.
Micromachines (Basel). 2021 Jun 11;12(6):684. doi: 10.3390/mi12060684.
10
An Analytical Approach to Designing Optimal Sparse 1-D Phased Arrays for Handheld Ultrasound Imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Jul;67(7):1354-1365. doi: 10.1109/TUFFC.2020.2973419. Epub 2020 Feb 12.

引用本文的文献

1
High frequency ultrasound 2D array design and fabrication with 3D printed interposers at 200 μm pitch.
Ultrasonics. 2025 Oct;154:107674. doi: 10.1016/j.ultras.2025.107674. Epub 2025 May 2.
3
4
2-D Array Design and Fabrication With Pitch-Shifting Interposer at Frequencies From 4 MHz up to 10 MHz.
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Dec;69(12):3382-3391. doi: 10.1109/TUFFC.2022.3216602. Epub 2022 Nov 24.
5
Experimental Study of Aperiodic Plane Wave Imaging for Ultrafast 3-D Ultrasound Imaging.
IEEE Trans Biomed Eng. 2022 Aug;69(8):2679-2690. doi: 10.1109/TBME.2022.3152212. Epub 2022 Jul 18.
6
Design of 2D Planar Sparse Binned Arrays Based on the Coarray Analysis.
Sensors (Basel). 2021 Nov 30;21(23):8018. doi: 10.3390/s21238018.
7
Design of Ultrasonic Synthetic Aperture Imaging Systems Based on a Non-Grid 2D Sparse Array.
Sensors (Basel). 2021 Nov 30;21(23):8001. doi: 10.3390/s21238001.
8
Current Development and Applications of Super-Resolution Ultrasound Imaging.
Sensors (Basel). 2021 Apr 1;21(7):2417. doi: 10.3390/s21072417.
9
Design of 2D Sparse Array Transducers for Anomaly Detection in Medical Phantoms.
Sensors (Basel). 2020 Sep 19;20(18):5370. doi: 10.3390/s20185370.

本文引用的文献

1
An Analytical Approach to Designing Optimal Sparse 1-D Phased Arrays for Handheld Ultrasound Imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Jul;67(7):1354-1365. doi: 10.1109/TUFFC.2020.2973419. Epub 2020 Feb 12.
2
Contrast and Volume Rate Enhancement of 3-D Ultrasound Imaging Using Aperiodic Plane Wave Angles: A Simulation Study.
IEEE Trans Ultrason Ferroelectr Freq Control. 2019 Nov;66(11):1731-1748. doi: 10.1109/TUFFC.2019.2931495. Epub 2019 Jul 31.
3
Experimental 3-D Ultrasound Imaging with 2-D Sparse Arrays using Focused and Diverging Waves.
Sci Rep. 2018 Jun 14;8(1):9108. doi: 10.1038/s41598-018-27490-2.
4
Density-tapered spiral arrays for ultrasound 3-D imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2015 Aug;62(8):1580-8. doi: 10.1109/TUFFC.2015.007035.
5
Design of optimal 2-D nongrid sparse arrays for medical ultrasound.
IEEE Trans Biomed Eng. 2013 Nov;60(11):3093-102. doi: 10.1109/TBME.2013.2267742. Epub 2013 Jun 11.
6
Localized photonic band edge modes and orbital angular momenta of light in a golden-angle spiral.
Opt Express. 2011 Nov 21;19(24):23631-42. doi: 10.1364/OE.19.023631.
7
Design Optimization for a 2-D Sparse Transducer Array for 3-D Ultrasound Imaging.
Proc IEEE Ultrason Symp. 2010 Oct 11;2010:1928-1931. doi: 10.1109/ULTSYM.2010.5935854.
8
ADS-based array design for 2-D and 3-D ultrasound imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2010 Jul;57(7):1568-82. doi: 10.1109/TUFFC.2010.1587.
9
2D array design based on Fermat spiral for ultrasound imaging.
Ultrasonics. 2010 Feb;50(2):280-9. doi: 10.1016/j.ultras.2009.09.010. Epub 2009 Sep 19.
10
Beam steering with pulsed two-dimensional transducer arrays.
IEEE Trans Ultrason Ferroelectr Freq Control. 1991;38(4):320-33. doi: 10.1109/58.84270.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验