Department of Plant and Microbial Biology and The Biotechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA.
Environ Microbiol Rep. 2020 Oct;12(5):503-513. doi: 10.1111/1758-2229.12863. Epub 2020 Jul 26.
Photosynthetic bacteria are abundant in alkaline, terrestrial hot springs and there is a long history of research on phototrophs in Yellowstone National Park (YNP). Hot springs provide a framework to examine the ecophysiology of phototrophs in situ because they provide natural gradients of geochemistry, pH and temperature. Phototrophs within the Cyanobacteria and Chloroflexi groups are frequently observed in alkaline hot springs. Decades of research has determined that temperature constrains Cyanobacteria in alkaline hot springs, but factors that constrain the distribution of phototrophic Chloroflexi remain unresolved. Using a combination of 16S rRNA gene sequencing and photoassimilation microcosms, we tested the hypothesis that temperature would constrain the activity and composition of phototrophic Cyanobacteria and Chloroflexi. We expected diversity and rates of photoassimilation to decrease with increasing temperature. We report 16S rRNA amplicon sequencing along with carbon isotope signatures and photoassimilation from 45 to 72°C in two alkaline hot springs. We find that Roseiflexus, Chloroflexus (Chloroflexi) and Leptococcus (Cyanobacteria) operational taxonomic units (OTUs) have distinct distributions with temperature. This distribution suggests that, like phototrophic Cyanobacteria, temperature selects for specific phototrophic Chloroflexi taxa. The richness of phototrophic Cyanobacteria decreased with increasing temperature along with a decrease in oxygenic photosynthesis, whereas Chloroflexi richness and rates of anoxygenic photosynthesis did not decrease with increasing temperature, even at temperatures approaching the upper limit of photosynthesis (~72-73°C). Our carbon isotopic data suggest an increasing prevalence of the 3-hydroxypropionate pathway with decreasing temperature coincident with photoautotrophic Chloroflexi. Together these results indicate temperature plays a role in defining the niche space of phototrophic Chloroflexi (as has been observed for Cyanobacteria), but other factors such as morphology, geochemistry, or metabolic diversity of Chloroflexi, in addition to temperature, could determine the niche space of this highly versatile group.
光合细菌在碱性陆地热泉中大量存在,黄石国家公园(YNP)对光养生物的研究历史悠久。热泉为研究光养生物的生理生态学提供了一个框架,因为它们提供了地球化学、pH 和温度的自然梯度。在碱性热泉中经常观察到蓝细菌和绿屈挠菌组的光养生物。几十年来的研究已经确定,温度限制了碱性热泉中的蓝细菌,但限制光养绿屈挠菌分布的因素仍未解决。本研究使用 16S rRNA 基因测序和光同化微宇宙相结合的方法,测试了温度会限制光养蓝细菌和绿屈挠菌活性和组成的假设。我们预计多样性和光同化率会随着温度的升高而降低。我们报告了在两个碱性热泉中,从 45 到 72°C 的 16S rRNA 扩增子测序以及碳同位素特征和光同化数据。我们发现,玫瑰杆菌、绿屈挠菌(绿屈挠菌)和 Leptococcus(蓝细菌)的操作分类单元(OTU)随温度有明显的分布。这种分布表明,与光养蓝细菌一样,温度选择了特定的光养绿屈挠菌类群。随着温度的升高,光养蓝细菌的丰富度降低,同时需氧光合作用减少,而绿屈挠菌的丰富度和厌氧光合作用的速率并没有随着温度的升高而降低,即使在接近光合作用上限的温度下(~72-73°C)也是如此。我们的碳同位素数据表明,随着温度的降低,3-羟基丙酸途径的出现频率增加,与光自养绿屈挠菌一致。这些结果表明,温度在确定光养绿屈挠菌的生态位空间方面起着作用(就像观察到的蓝细菌一样),但除了温度之外,绿屈挠菌的形态、地球化学或代谢多样性等其他因素也可能决定这个高度多样的群体的生态位空间。