Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20814, United States.
J Chem Theory Comput. 2020 Aug 11;16(8):5105-5126. doi: 10.1021/acs.jctc.0c00247. Epub 2020 Jul 21.
Hydrogen fluoride (HF) is the most polar diatomic molecule and one of the simplest molecules capable of hydrogen-bonding. HF deviates from ideality both in the gas phase and in solution and is thus of great interest from a fundamental standpoint. Pure and aqueous HF solutions are broadly used in chemical and industrial processes, despite their high toxicity. HF is a stable species also in some biological conditions, because it does not readily dissociate in water unlike other hydrogen halides; yet, little is known about how HF interacts with biomolecules. Here, we set out to develop a molecular-mechanics model to enable computer simulations of HF in chemical and biological applications. This model is based on a comprehensive high-level ab initio quantum chemical investigation of the structure and energetics of the HF monomer and dimer; (HF) clusters, for = 3-7; various clusters of HF and HO; and complexes of HF with analogs of all 20 amino acids and of several commonly occurring lipids, both neutral and ionized. This systematic analysis explains the unique properties of this molecule: for example, that interacting HF molecules favor nonlinear geometries despite being diatomic and that HF is a strong H-bond donor but a poor acceptor. The ab initio data also enables us to calibrate a three-site molecular-mechanics model, with which we investigate the structure and thermodynamic properties of gaseous, liquid, and supercritical HF in a wide range of temperatures and pressures; the solvation structure of HF in water and of HO in liquid HF; and the free diffusion of HF across a lipid bilayer, a key process underlying the high cytotoxicity of HF. Despite its inherent simplifications, the model presented significantly improves upon previous efforts to capture the properties of pure and aqueous HF fluids by molecular-mechanics methods and to our knowledge constitutes the first parameter set calibrated for biomolecular simulations.
氢氟酸(HF)是极性最强的双原子分子之一,也是最简单的能够形成氢键的分子之一。HF 在气相和溶液中都偏离理想状态,因此从基础理论的角度来看非常有趣。尽管 HF 毒性很高,但它仍是化学和工业过程中广泛使用的纯 HF 和水合 HF 溶液。HF 也是一些生物条件下的稳定物质,因为它不像其他卤化氢那样容易在水中离解;然而,人们对 HF 如何与生物分子相互作用知之甚少。在这里,我们着手开发一种分子力学模型,以便能够在化学和生物应用中对 HF 进行计算机模拟。该模型基于对 HF 单体和二聚体结构和能量的全面高级从头算量子化学研究;(HF)簇, = 3-7;HF 和 HO 的各种簇;以及 HF 与所有 20 种氨基酸和几种常见脂质(中性和离子化)的类似物的复合物。这种系统分析解释了这种分子的独特性质:例如,尽管相互作用的 HF 分子是双原子的,但它们有利于非线性几何形状,并且 HF 是强氢键供体但弱氢键受体。从头算数据还使我们能够校准一个三位点分子力学模型,我们用该模型研究了在很宽的温度和压力范围内气态、液态和超临界 HF 的结构和热力学性质;HF 在水中和 HO 在液态 HF 中的溶剂化结构;以及 HF 穿过脂质双层的自由扩散,这是 HF 高细胞毒性的关键过程。尽管该模型具有固有的简化,但它通过分子力学方法显著提高了对纯 HF 和水合 HF 流体性质的捕捉能力,并且据我们所知,它是第一个为生物分子模拟校准的参数集。