Centre for Research in Molecular Modeling (CERMM) and PROTEO , Department of Chemistry and Biochemistry , Concordia University , 7141 Sherbrooke Street West , Montréal , Québec H4B 1R6 , Canada.
J Phys Chem B. 2018 Apr 12;122(14):3760-3770. doi: 10.1021/acs.jpcb.8b00089. Epub 2018 Mar 28.
S-aromatic motifs are important noncovalent forces for protein stability and function but remain poorly understood. Hence, we performed quantum calculations at the MP2(full)/6-311++G(d,p) level on complexes between Cys (HS, MeSH) and Met (MeS) models with models of Phe (benzene, toluene), Trp (indole, 3-methylindole), Tyr (phenol, 4-methylphenol), and His (imidazole, 4-methylimidazole). The most stable gas-phase conformers exhibit binding energies of -2 to -6 kcal/mol, and the S atom lies perpendicular to the ring plane. This reveals preferential interaction with the ring π-system, except in the imidazoles where S binds edge-on to an N atom. Complexation tunes the gas-phase vertical ionization potentials of the ligands over as much as 1 eV, and strong σ- or π-type H-bonding supports charge transfer to the H-bond donor, rendering it more oxidizable. When the S atom acts as an H-bond acceptor (N/O-H···S), calibration of the CHARMM36 force field (by optimizing pair-specific Lennard-Jones parameters) is required. Implementing the optimized parameters in molecular dynamics simulations in bulk water, we find stable S-aromatic complexes with binding free energies of -0.6 to -1.1 kcal/mol at ligand separations up to 8 Å. The aqueous S-aromatics exhibit flexible binding conformations, but edge-on conformers are less stable in water. Reflecting this, only 0.3 to 10% of the S-indole, S-phenol, and S-imidazole structures are stabilized by N/O-H···S or S-H···O/N σ-type H-bonding. The wide range of energies and geometries found for S-aromatic interactions and their tunable redox properties expose the versatility and variability of the S-aromatic motif in proteins and allow us to predict a number of their reported properties.
S-芳构 motif 是蛋白质稳定性和功能的重要非共价作用力,但仍知之甚少。因此,我们在 MP2(full)/6-311++G(d,p) 水平上对 Cys (HS, MeSH) 和 Met (MeS) 模型与 Phe (benzene, toluene)、Trp (indole, 3-methylindole)、Tyr (phenol, 4-methylphenol) 和 His (imidazole, 4-methylimidazole) 模型之间的复合物进行了量子计算。最稳定的气相构象表现出-2 到-6 kcal/mol 的结合能,S 原子垂直于环平面。这表明与芳环π体系优先相互作用,除了在咪唑中,S 边缘结合到 N 原子上。配位作用使配体的气相垂直电离势调谐高达 1 eV,并且强σ-或π型 H 键支持电荷转移到 H 键供体,使其更易氧化。当 S 原子作为 H 键受体 (N/O-H···S) 时,需要对 CHARMM36 力场进行校准 (通过优化对特定 Lennard-Jones 参数)。在体相水中进行分子动力学模拟时,实现优化参数,我们发现 S-芳构复合物在配体分离高达 8 Å 时具有-0.6 到-1.1 kcal/mol 的结合自由能。水性 S-芳构复合物具有灵活的结合构象,但边缘结合构象在水中不太稳定。反映这一点,只有 0.3 到 10%的 S-吲哚、S-苯酚和 S-咪唑结构通过 N/O-H···S 或 S-H···O/N σ 型 H 键稳定。S-芳构相互作用的能量和几何形状范围广泛,其氧化还原性质可调,暴露了 S-芳构 motif 在蛋白质中的多功能性和可变性,并使我们能够预测其许多报道的性质。