Center for Health Decision Science (A.P., D.I.S.), Harvard T.H.
Department of Health Policy and Management (A.P., M.B.R.), Harvard T.H.
Circ Cardiovasc Qual Outcomes. 2020 Jul;13(7):e006492. doi: 10.1161/CIRCOUTCOMES.120.006492. Epub 2020 Jul 3.
Healthcare payers in the United States are increasingly tying provider payments to quality and value using pay-for-performance policies. Cost-effectiveness analysis quantifies value in healthcare but is not currently used to design or prioritize pay-for-performance strategies or metrics. Acute ischemic stroke care provides a useful application to demonstrate how simulation modeling can be used to determine cost-effective levels of financial incentives used in pay-for-performance policies and associated challenges with this approach.
Our framework requires a simulation model that can estimate quality-adjusted life years and costs resulting from improvements in a quality metric. A monetary level of incentives can then be back-calculated using the lifetime discounted quality-adjusted life year (which includes effectiveness of quality improvement) and cost (which includes incentive payments and cost offsets from quality improvements) outputs from the model. We applied this framework to an acute ischemic stroke microsimulation model to calculate the difference in population-level net monetary benefit (willingness-to-pay of $50 000 to $150 000/quality-adjusted life year) accrued under current Medicare policy (stroke payment not adjusted for performance) compared with various hypothetical pay-for-performance policies. Performance measurement was based on time-to-thrombolytic treatment with tPA (tissue-type plasminogen activator). Compared with current payment, equivalent population-level net monetary benefit was achieved in pay-for-performance policies with 10-minute door-to-needle time reductions (5057 more acute ischemic stroke cases/y in the 0-3-hour window) incentivized by increasing tPA payment by as much as 18% to 44% depending on willingness-to-pay for health.
Cost-effectiveness modeling can be used to determine the upper bound of financial incentives used in pay-for-performance policies, although currently, this approach is limited due to data requirements and modeling assumptions. For tPA payments in acute ischemic stroke, our model-based results suggest financial incentives leading to a 10-minute decrease in door-to-needle time should be implemented but not exceed 18% to 44% of current tPA payment. In general, the optimal level of financial incentives will depend on willingness-to-pay for health and other modeling assumptions around parameter uncertainty and the relationship between quality improvements and long-run quality-adjusted life expectancy and costs.
美国的医疗保健支付方越来越多地通过绩效付费政策将支付与质量和价值联系起来。成本效益分析量化了医疗保健中的价值,但目前尚未用于设计或优先考虑绩效付费策略或指标。急性缺血性脑卒中护理提供了一个有用的应用,以展示如何使用仿真模型来确定绩效付费政策中使用的财务激励的成本效益水平以及这种方法所面临的挑战。
我们的框架需要一个能够估计质量调整生命年和因质量指标改善而导致的成本的仿真模型。然后,可以使用模型的终生折扣质量调整生命年(包括质量改善的效果)和成本(包括激励支付和质量改善的成本抵消)输出,回推激励的货币水平。我们将此框架应用于急性缺血性脑卒中微模拟模型,以计算当前医疗保险政策(未根据绩效调整的中风支付)下与各种假设绩效付费政策相比,人群水平净货币收益(支付意愿为 50000 美元至 150000 美元/质量调整生命年)的差异。绩效衡量基于接受 tPA(组织型纤溶酶原激活剂)溶栓治疗的时间。与当前支付相比,在激励 tPA 支付增加 18%至 44%的情况下,10 分钟内门到针时间减少(0-3 小时窗口内急性缺血性脑卒中病例增加 5057 例)的绩效付费政策中,实现了等效的人群水平净货币收益,这取决于对健康的支付意愿。
成本效益模型可用于确定绩效付费政策中使用的财务激励的上限,尽管目前由于数据要求和建模假设,这种方法受到限制。对于急性缺血性脑卒中的 tPA 支付,我们的基于模型的结果表明,应该实施导致门到针时间减少 10 分钟的财务激励,但不应超过当前 tPA 支付的 18%至 44%。一般来说,最佳财务激励水平将取决于对健康的支付意愿以及参数不确定性和质量改进与长期质量调整生命预期和成本之间关系的其他建模假设。