Suppr超能文献

验证研究的常见误区。

Common misconceptions about validation studies.

机构信息

Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.

Department of Global Health, Boston University School of Public Health, Boston, MA, USA.

出版信息

Int J Epidemiol. 2020 Aug 1;49(4):1392-1396. doi: 10.1093/ije/dyaa090.

Abstract

Information bias is common in epidemiology and can substantially diminish the validity of study results. Validation studies, in which an investigator compares the accuracy of a measure with a gold standard measure, are an important way to understand and mitigate this bias. More attention is being paid to the importance of validation studies in recent years, yet they remain rare in epidemiologic research and, in our experience, they remain poorly understood. Many epidemiologists have not had any experience with validations studies, either in the classroom or in their work. We present an example of misclassification of a dichotomous exposure to elucidate some important misunderstandings about how to conduct validation studies to generate valid information. We demonstrate that careful attention to the design of validation studies is central to determining how the bias parameters (e.g. sensitivity and specificity or positive and negative predictive values) can be used in quantitative bias analyses to appropriately correct for misclassification. Whether sampling is done based on the true gold standard measure, the misclassified measure or at random will determine which parameters are valid and the precision of those estimates. Whether or not the validation is done stratified by other key variables (e.g. by the exposure) will also determine the validity of those estimates. We also present sample questions that can be used to teach these concepts. Increasing the presence of validation studies in the classroom could have a positive impact on their use and improve the validity of estimates of effect in epidemiologic research.

摘要

信息偏倚在流行病学中很常见,会极大地降低研究结果的有效性。验证研究是一种重要的方法,可以了解和减轻这种偏倚,其通过研究者将测量值与金标准测量值进行比较来评估测量的准确性。近年来,越来越多的人开始关注验证研究的重要性,但这类研究在流行病学研究中仍然很少见,而且根据我们的经验,人们对这类研究的理解仍然很差。许多流行病学家无论是在课堂上还是在工作中,都没有做过验证研究。我们通过一个二分类暴露的错误分类的例子来说明一些关于如何进行验证研究以生成有效信息的重要误解。我们表明,仔细关注验证研究的设计是确定如何在定量偏倚分析中使用偏倚参数(例如敏感性和特异性或阳性和阴性预测值)来适当纠正错误分类的关键。抽样是基于真实的金标准测量值、错误分类的测量值还是随机进行,将决定哪些参数是有效的,以及这些估计值的精度。无论是否根据其他关键变量(例如暴露)进行分层验证,也将决定这些估计值的有效性。我们还提出了一些可以用于教授这些概念的示例问题。增加课堂上验证研究的数量可能会对其应用产生积极影响,并提高流行病学研究中效应估计的有效性。

相似文献

1
Common misconceptions about validation studies.验证研究的常见误区。
Int J Epidemiol. 2020 Aug 1;49(4):1392-1396. doi: 10.1093/ije/dyaa090.
6
Quantitative bias analysis for study and grant planning.定量偏倚分析在研究和资助计划中的应用。
Ann Epidemiol. 2020 Mar;43:32-36. doi: 10.1016/j.annepidem.2020.01.013. Epub 2020 Feb 11.

引用本文的文献

6
Modern sources of controls in case-control studies.病例对照研究中现代对照来源
Am J Epidemiol. 2025 Sep 3;194(9):2631-2640. doi: 10.1093/aje/kwae437.

本文引用的文献

5
Why most published research findings are false.为何大多数已发表的研究结果是错误的。
PLoS Med. 2005 Aug;2(8):e124. doi: 10.1371/journal.pmed.0020124. Epub 2005 Aug 30.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验