Suppr超能文献

定量偏倚分析在研究和资助计划中的应用。

Quantitative bias analysis for study and grant planning.

机构信息

Department of Epidemiology, Boston University School of Public Health, Boston, MA; Department of Global Health, Boston University School of Public Health, Boston, MA.

Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA.

出版信息

Ann Epidemiol. 2020 Mar;43:32-36. doi: 10.1016/j.annepidem.2020.01.013. Epub 2020 Feb 11.

Abstract

PURPOSE

Epidemiologists often think about the balance between study error and cost-efficiency in terms of study design and strategies to reduce random error. We less often consider cost-efficiencies in terms of dealing with systematic errors that arise within a study, such as in deciding how to measure study variables and misclassification implications.

METHODS

Given the information used to inform a study size calculation, the expected study data can be simulated during study planning, and the impact of anticipated biases can be estimated using quantitative bias analysis. This would allow investigators and stakeholders to identify areas where better data collection through more valid instruments is critical and where additional investment will not yield strong validity benefits. This could promote better use of study resources and help increase investigators' chances of funding by demonstrating they have thought through biases and have a plan for mitigating the impact.

RESULTS

We demonstrate how this would work with a practical example using the relationship between smoking during pregnancy as measured on birth certificates and incident breast cancer.

CONCLUSIONS

We show that although exposure sensitivity would likely be poor, spending more money to get a better smoking measure is unlikely to yield more valid estimates.

摘要

目的

流行病学家在考虑研究设计和减少随机误差的策略时,经常会考虑到研究误差和成本效益之间的平衡。我们很少考虑到在研究中处理系统误差的成本效益,例如在决定如何测量研究变量和分类错误的影响时。

方法

根据用于告知研究规模计算的信息,可以在研究规划期间模拟预期的研究数据,并使用定量偏差分析估计预期偏差的影响。这将使研究人员和利益相关者能够确定哪些领域需要通过更有效的工具进行更好的数据收集,哪些领域需要额外的投资才能产生较强的有效性收益。这可以促进更好地利用研究资源,并通过证明他们已经考虑到偏差并制定了减轻影响的计划,从而帮助增加研究人员获得资金的机会。

结果

我们使用出生证明上测量的怀孕期间吸烟与乳腺癌发病之间的关系的实际示例来说明这是如何运作的。

结论

我们表明,尽管暴露敏感性可能很差,但花费更多的钱来获得更好的吸烟测量值不太可能产生更有效的估计值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验