Suppr超能文献

基于时空嵌入域翻译预测分次放疗计划。

Prediction of inter-fractional radiotherapy dose plans with domain translation in spatiotemporal embeddings.

机构信息

Polytechnique Montréal, Montréal, Québec, Canada.

CHUM, Dept. Radio-oncology, Montréal, Québec, Canada.

出版信息

Med Image Anal. 2020 Aug;64:101728. doi: 10.1016/j.media.2020.101728. Epub 2020 May 17.

Abstract

External beam radiation therapy fractions have become extremely complex and tedious procedures to plan, due to stringent requirements of delivering the highest radiation dose to the tumor while maximally avoiding organs at risk. However, due to anatomic and/or biological changes between fractions, dose re-optimization may be needed. Re-optimization is a time-consuming task which is typically triggered based on subjective visual assessment by an experienced physician. To address limitations in this process, we introduce a predictive framework which learns the evolution of tumor anatomy as well as inter-fractional dose delivery variations for head and neck cancers. First, joint low-dimensional discriminant embeddings maximizing the separation between responsive and non-responsive groups to external beam radiotherapy plans are constructed from deep neural networks in order to capture patient-specific dose modulations with respect to anatomical variations. Then, latent representations are fed to a domain-level adversarial network to translate observed anatomical changes into dosimetric variations, which aims to enforce local semantic consistency in the overall translation. Dose distribution trajectories are represented in a group-average piecewise-geodesic setting to handle anatomical variations during therapy, using a quadratic optimization to perform curve regression. At test time, an annotated baseline CT is projected onto the latent space and translated to dose domain, from which a spatiotemporal regression model is constructed using parallel transport trajectories defined from closest samples. This allows to predict dosimetry changes during the course of treatment. The model was trained on 337 cases and tested on 50 separate patients using sequential CT and associated dosimetry data, with the probabilistic framework yielding a Dice score of 92% and an overall dose difference of 1.2 Gy in organs at risk and tumor volume over the course of multi-day treatment course, with a 5% reduction in delivered fraction segments.

摘要

由于需要严格要求将最高剂量的辐射输送到肿瘤,同时最大限度地避免危险器官,因此外部束放射治疗的分次剂量变得极其复杂和繁琐。然而,由于分次之间的解剖和/或生物学变化,可能需要重新优化剂量。重新优化是一项耗时的任务,通常是根据经验丰富的医生的主观视觉评估来触发的。为了解决这个过程中的局限性,我们引入了一个预测框架,该框架可以学习头颈部癌症的肿瘤解剖学演变以及分次间剂量输送变化。首先,从深度神经网络构建联合低维判别嵌入,最大限度地分离对外束放射治疗计划有反应和无反应的组,以捕获与解剖变化相关的患者特异性剂量调制。然后,将潜在表示输入到域级对抗网络中,将观察到的解剖变化转换为剂量变化,旨在在整体转换中强制实现局部语义一致性。剂量分布轨迹以群组平均分段测地线的形式表示,以处理治疗期间的解剖变化,使用二次优化来执行曲线回归。在测试时,将注释的基线 CT 投影到潜在空间并转换到剂量域,从其中使用从最近样本定义的平行传输轨迹构建时空回归模型。这允许预测治疗过程中的剂量变化。该模型在 337 例患者上进行了训练,并在 50 例单独患者上进行了测试,使用连续 CT 和相关剂量数据,概率框架的 Dice 得分达到 92%,危险器官和肿瘤体积的总剂量差异为 1.2 Gy,在多天的治疗过程中,传递的分次段减少了 5%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验