Suppr超能文献

基于双金字塔对抗网络的胰腺癌立体定向体部放疗剂量预测学习。

Learning-based dose prediction for pancreatic stereotactic body radiation therapy using dual pyramid adversarial network.

机构信息

Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America.

出版信息

Phys Med Biol. 2021 Jun 21;66(12). doi: 10.1088/1361-6560/ac0856.

Abstract

Treatment planning for pancreatic cancer stereotactic body radiation therapy (SBRT) is very challenging owing to vast spatial variations and close proximity of many organs-at-risk. Recently, deep learning (DL) based methods have been applied in dose prediction tasks of various treatment sites with the aim of relieving planning challenges. However, its effectiveness on pancreatic cancer SBRT is yet to be fully explored due to limited investigations in the literature. This study aims to further current knowledge in DL-based dose prediction tasks by implementing and demonstrating the feasibility of a new dual pyramid networks (DPNs) integrated DL model for predicting dose distributions of pancreatic SBRT. The proposed framework is composed of four parts: CT-only feature pyramid network (FPN), contour-only FPN, late fusion network and an adversarial network. During each phase of the network, combination of mean absolute error, gradient difference error, histogram matching, and adversarial loss is used for supervision. The performance of proposed model was demonstrated for pancreatic cancer SBRT plans with doses prescribed between 33 and 50 Gy across as many as three planning target volumes (PTVs) in five fractions. Five-fold cross validation was performed on 30 patients, and another 20 patients were used as holdout tests of trained model. Predicted plans were compared with clinically approved plans through dose volume parameters and two-paired t-test. For the same sets, our results were compared with three different DL architectures: 3D U-Net, 3D U-Net with adversarial learning, and DPN without adversarial learning. The proposed framework was able to predict 87% and 91% of clinically relevant dose parameters for cross validation sets and holdout sets, respectively, without any significant differences ( > 0.05). Dose distribution predicted by our framework was also able to predict the intentional hotspots as feature characteristics of SBRT plans. Our method achieved higher correlation coefficients with the ground truth in 22/26, 24/26 and 20/26 dose volume parameters compared to the network without adversarial learning, 3D U-Net, and 3D U-Net with adversarial learning, respectively. Overall, the proposed model was able to predict doses to cases with both single and multiple PTVs. In conclusion, the DPN integrated DL model was successfully implemented, and demonstrated good dose prediction accuracy and dosimetric characteristics for pancreatic cancer SBRT.

摘要

由于胰腺肿瘤立体定向体部放射治疗(SBRT)的靶区空间变化大,危及器官毗邻关系复杂,因此其治疗计划的制定极具挑战性。近年来,深度学习(DL)方法已被应用于各种治疗部位的剂量预测任务,旨在缓解计划制定的挑战。然而,由于文献中对此研究较少,其在胰腺肿瘤 SBRT 中的有效性尚未得到充分探索。本研究旨在通过实现和演示一种新的双金字塔网络(DPN)集成 DL 模型,进一步探索基于 DL 的剂量预测任务,以预测胰腺 SBRT 的剂量分布。所提出的框架由四部分组成:仅 CT 特征金字塔网络(FPN)、仅轮廓 FPN、晚期融合网络和对抗网络。在网络的每个阶段,都使用平均绝对误差、梯度差误差、直方图匹配和对抗损失的组合进行监督。该模型在 30 名患者中进行了五折交叉验证,并使用另外 20 名患者作为训练模型的独立测试集。将预测计划与临床批准的计划进行比较,通过剂量体积参数和双配对 t 检验进行比较。对于相同的数据集,我们将结果与三种不同的 DL 架构进行比较:3D U-Net、带对抗学习的 3D U-Net 和不带对抗学习的 DPN。该框架能够分别预测验证集和独立测试集的 87%和 91%的临床相关剂量参数,且无显著差异(>0.05)。该框架预测的剂量分布也能够预测 SBRT 计划的有意热点作为特征特征。与不带对抗学习的网络、3D U-Net 和带对抗学习的 3D U-Net 相比,我们的方法在 22/26、24/26 和 20/26 个剂量体积参数中与真实值的相关性更高。总的来说,该模型能够预测单个和多个 PTV 情况下的剂量。总之,成功实现了 DPN 集成的 DL 模型,并证明了其在胰腺肿瘤 SBRT 中的剂量预测准确性和剂量学特征良好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edf5/11742180/42dc1d8f3484/nihms-2045116-f0001.jpg

相似文献

引用本文的文献

4
Deep Learning Applications in Pancreatic Cancer.深度学习在胰腺癌中的应用
Cancers (Basel). 2024 Jan 19;16(2):436. doi: 10.3390/cancers16020436.

本文引用的文献

2
Array programming with NumPy.使用 NumPy 进行数组编程。
Nature. 2020 Sep;585(7825):357-362. doi: 10.1038/s41586-020-2649-2. Epub 2020 Sep 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验