Suppr超能文献

使用深度卷积神经网络对粒子治疗的水的发光图像进行剂量分布预测。

Prediction of dose distribution from luminescence image of water using a deep convolutional neural network for particle therapy.

作者信息

Yabe Takuya, Yamamoto Seiichi, Oda Masahiro, Mori Kensaku, Toshito Toshiyuki, Akagi Takashi

机构信息

Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan.

Department of Medical Technology, Nagoya University Hospital, Nagoya, Japan.

出版信息

Med Phys. 2020 Sep;47(9):3882-3891. doi: 10.1002/mp.14372. Epub 2020 Jul 28.

Abstract

PURPOSE

We recently obtained nearly the same depth profiles of luminescence images of water as dose for protons by subtracting the Cerenkov light component emitted by secondary electrons of prompt gamma photons. However, estimating the distribution of Cerenkov light with this correction method is time-consuming, depending on the irradiated energy of protons by Monte Carlo simulation. Therefore, we proposed a method of estimating dose distributions from the measured luminescence images of water using a deep convolutional neural network (DCNN).

METHODS

In this study, we adopted the U-Net architectures as the DCNN. To prepare a large amount of image data for DCNN training, we calculated the training data pairs of two-dimensional (2D) dose distributions and luminescence images of water by Monte Carlo simulation for protons and carbon ions. After training the U-Net model for protons or carbon ions using these dose distributions and luminescence images calculated by Monte Carlo simulation, we predicted the dose distributions from the calculated and measured luminescence images of water using the trained U-Net model.

RESULTS

All of the U-Net model's predicted images were in good agreement with the MC-calculated dose distributions and showed lower values of the root mean square percentage error (RSMPE) and higher values in the structural similarity index (SSIM) in comparison with these values for calculated or measured luminescence images.

CONCLUSION

We confirmed that the DCNN effectively predicts dose distributions in water from the measured as well as calculated luminescence images of water for particle therapy.

摘要

目的

我们最近通过减去瞬发伽马光子的二次电子发射的切伦科夫光成分,获得了与质子剂量几乎相同的水的发光图像深度分布。然而,使用这种校正方法估计切伦科夫光的分布很耗时,这取决于通过蒙特卡罗模拟的质子辐照能量。因此,我们提出了一种使用深度卷积神经网络(DCNN)从测量的水的发光图像估计剂量分布的方法。

方法

在本研究中,我们采用U-Net架构作为DCNN。为了为DCNN训练准备大量图像数据,我们通过对质子和碳离子的蒙特卡罗模拟计算二维(2D)剂量分布和水的发光图像的训练数据对。使用这些通过蒙特卡罗模拟计算的剂量分布和发光图像对质子或碳离子的U-Net模型进行训练后,我们使用训练好的U-Net模型从计算和测量的水的发光图像预测剂量分布。

结果

所有U-Net模型的预测图像与MC计算的剂量分布高度吻合,与计算或测量的发光图像相比,均方根百分比误差(RSMPE)值更低,结构相似性指数(SSIM)值更高。

结论

我们证实,DCNN能有效地从测量以及计算的水的发光图像中预测粒子治疗中水中的剂量分布。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验