Tatara Eric, Collier Nicholson T, Ozik Jonathan, Gutfraind Alexander, Cotler Scott J, Dahari Harel, Major Marian, Boodram Basmattee
Decision and Infrastructure Sciences Division, Argonne National Laboratory, 5735 S Ellis Ave, Chicago, IL 60637, USA.
Division of Hepatology, Dept of Medicine, Loyola University Medical Center, 2160 S 1st Ave, Maywood, IL 60153, USA.
Proc Winter Simul Conf. 2019 Dec;2019:1008-1019. doi: 10.1109/wsc40007.2019.9004747. Epub 2020 Feb 20.
Hepatitis C (HCV) is a leading cause of chronic liver disease and mortality worldwide and persons who inject drugs (PWID) are at the highest risk for acquiring and transmitting HCV infection. We developed an agent-based model (ABM) to identify and optimize direct-acting antiviral (DAA) therapy scale-up and treatment strategies for achieving the World Health Organization (WHO) goals of HCV elimination by the year 2030. While DAA is highly efficacious, it is also expensive, and therefore intervention strategies should balance the goals of elimination and the cost of the intervention. Here we present and compare two methods for finding PWID treatment enrollment strategies by conducting a standard model parameter sweep and compare the results to an evolutionary multi-objective optimization algorithm. The evolutionary approach provides a pareto-optimal set of solutions that minimizes treatment costs and incidence rates.
丙型肝炎(HCV)是全球慢性肝病和死亡的主要原因,注射吸毒者(PWID)感染和传播HCV的风险最高。我们开发了一种基于主体的模型(ABM),以确定和优化直接抗病毒药物(DAA)治疗的扩大规模和治疗策略,以实现世界卫生组织(WHO)到2030年消除HCV的目标。虽然DAA非常有效,但也很昂贵,因此干预策略应在消除目标和干预成本之间取得平衡。在这里,我们通过进行标准模型参数扫描,展示并比较了两种寻找PWID治疗登记策略的方法,并将结果与进化多目标优化算法进行比较。进化方法提供了一组帕累托最优解,可将治疗成本和发病率降至最低。